ObjectiveHereditary neuropathy with liability to pressure palsies (HNPP) is caused by heterozygous deletion of the peripheral myelin protein 22 (PMP22) gene. Patients with HNPP present multifocal, reversible sensory/motor deficits due to increased susceptibility to mechanical pressure. Additionally, age‐dependent axonal degeneration is reported. We hypothesize that length‐dependent axonal loss can be revealed by MRI, irrespective of the multifocal phenotype in HNPP.MethodsNerve and muscle MRI data were acquired in the proximal and distal leg of patients with HNPP (n = 10) and matched controls (n = 7). More specifically, nerve magnetization transfer ratios (MTR) were evaluated to assay proximal‐to‐distal gradients in nerve degeneration, while intramuscular fat percentages (Fper) were evaluated to assay muscle fat replacement following denervation. Neurological disabilities were assessed via the Charcot‐Marie‐Tooth neuropathy score (CMTNS) for correlation with MRI.ResultsFper values were elevated in HNPP proximal muscle (9.8 ± 2.2%, P = 0.01) compared to controls (6.9 ± 1.0%). We observed this same elevation of HNPP distal muscles (10.5 ± 2.5%, P < 0.01) relative to controls (6.3 ± 1.1%). Additionally, the amplitude of the proximal‐to‐distal gradient in Fper was more significant in HNPP patients than controls (P < 0.01), suggesting length‐dependent axonal loss. In contrast, nerve MTR values were similar between HNPP subjects (sciatic/tibial nerves = 39.4 ± 2.0/34.2 ± 2.5%) and controls (sciatic/tibial nerves = 37.6 ± 3.8/35.5 ± 1.2%). Proximal muscle Fper values were related to CMTNS (r = 0.69, P = 0.03), while distal muscle Fper and sciatic/tibial nerve MTR values were not related to disability.InterpretationDespite the multifocal nature of the HNPP phenotype, muscle Fper measurements relate to disability and exhibit a proximal‐to‐distal gradient consistent with length‐dependent axonal loss, suggesting that Fper may be a viable biomarker of disease progression in HNPP.
Objective Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision‐making can lead to a negative impact on patient outcomes. Early identification of a failed nerve repair could prevent permanent muscle atrophy and loss of function. This study aims to test the feasibility of performing diffusion tensor imaging (DTI) to evaluate injury and recovery following repair of wrist trauma. We hypothesize that DTI provides a noninvasive and reliable assessment of regeneration, which may improve clinical decision‐making and alter the clinical course of surgical interventions. Methods Clinical and MRI measurements from subjects with traumatic peripheral nerve injury, carpal tunnel syndrome, and healthy control subjects were compared to evaluate the relationship between DTI metrics and injury severity. Results Fractional anisotropy from DTI was sensitive to differences between damaged and healthy nerves, damaged and compressed nerves, and injured and healthy contralateral nerves. Longitudinal measurements in two injury subjects also related to clinical outcomes. Implications of other diffusion measures are also discussed. Interpretation DTI is a sensitive tool for wrist nerve injuries and can be utilized for monitoring nerve recovery. Across three subjects with nerve injuries, this study has shown how DTI can detect abnormalities between injured and healthy nerves, measure recovery, and determine if re‐operation was successful. Additional comparisons to carpal tunnel syndrome and healthy nerves show that DTI is sensitive to the degree of impairment.
Background Lipedema exhibits excessive lower‐extremity subcutaneous adipose tissue (SAT) deposition, which is frequently misidentified as obesity until lymphedema presents. MR lymphangiography may have relevance to distinguish lipedema from obesity or lymphedema. Hypothesis Hyperintensity profiles on 3T MR lymphangiography can identify distinct features consistent with SAT edema in participants with lipedema. Study Type Prospective cross‐sectional study. Subjects Participants (48 females, matched for age [mean = 44.8 years]) with lipedema (n = 14), lipedema with lymphedema (LWL, n = 12), cancer treatment‐related lymphedema (lymphedema, n = 8), and controls without these conditions (n = 14). Field Strength/Sequence 3T MR lymphangiography (nontracer 3D turbo‐spin‐echo). Assessment Review of lymphangiograms in lower extremities by three radiologists was performed independently. Spatial patterns of hyperintense signal within the SAT were scored for extravascular (focal, diffuse, or not apparent) and vascular (linear, dilated, or not apparent) image features. Statistical Tests Interreader reliability was computed using Fleiss Kappa. Fisher's exact test was used to evaluate the proportion of image features between study groups. Multinomial logistic regression was used to assess the relationship between image features and study groups. The odds ratio (OR) and 95% confidence interval (CI) of SAT extravascular and vascular features was reported in groups compared to lipedema. The threshold of statistical significance was P < 0.05. Results Reliable agreement was demonstrated between three independent, blinded reviewers (P < 0.001). The frequency of SAT hyperintensities in participants with lipedema (36% focal, 36% diffuse), LWL (42% focal, 33% diffuse), lymphedema (62% focal, 38% diffuse), and controls (43% focal, 0% diffuse) was significantly distinct. Compared with lipedema, SAT hyperintensities were less frequent in controls (focal: OR = 0.63, CI = 0.11–3.41; diffuse: OR = 0.05, CI = 0.00–1.27), similar in LWL (focal: OR = 1.29, CI = 0.19–8.89; diffuse: OR = 1.05, CI = 0.15–7.61), and more frequent in lymphedema (focal: OR = 9.00, CI = 0.30–274.12; diffuse: OR = 5.73, CI = 0.18–186.84). Data Conclusion Noninvasive MR lymphangiography identifies distinct signal patterns indicating SAT edema and lymphatic load in participants with lipedema. Evidence Level 1 Technical Efficacy Stage 1
The theory of spreading activation proposes that the activation of a semantic memory node may spread along bidirectional associative links to other related nodes. Although this theory was originally proposed to explain semantic memory networks, a similar process may be said to exist with episodic or emotional memory networks. The Somatic Marker hypothesis proposes that remembering an emotional memory activates the somatic sensations associated with the memory. An integration of these two models suggests that as spreading activation in emotional memory networks increases, a greater number of associated somatic markers would become activated. This process would then result in greater changes in physiological functioning. We sought to investigate this possibility by having subjects recall words associated with sad and happy memories, in addition to a neutral condition. The average ages of the memories and the number of word memories recalled were then correlated with measures of heart rate and skin conductance. The results indicated significant positive correlations between the number of happy word memories and heart rate (r = .384, p = .022) and between the average ages of the sad memories and skin conductance (r = .556, p = .001). Unexpectedly, a significant negative relationship was found between the number of happy word memories and skin conductance (r = −.373, p = .025). The results provide partial support for our hypothesis, indicating that increasing spreading activation in emotional memory networks activates an increasing number of somatic markers and this is then reflected in greater physiological activity at the time of recalling the memories.
ObjectivePatients with SLE frequently have debilitating fatigue and reduced physical activity. Intermuscular adipose tissue (IMAT) accumulation is associated with reduced physical exercise capacity. We hypothesised that IMAT is increased in patients with SLE and associated with increased fatigue, reduced physical activity and increased inflammation.MethodsIn a cross-sectional study, 23 patients with SLE and 28 control participants were evaluated. IMAT was measured in the calf muscles using sequentialT1-weighted MRI. Patient-reported physical activity and fatigue were measured and a multiplex proteomic assay was used to measure markers and mediators of inflammation.ResultsIMAT accumulation (percentage of IMAT area to muscle area) was significantly higher in SLE versus control participants (7.92%, 4.51%–13.39% vs 2.65%, 1.15%–4.61%, median, IQR, p<0.001) and remained significant after adjustment for age, sex, race and body mass index (p<0.001). In patients with SLE, IMAT accumulation did not differ significantly among corticosteroid users and non-users (p=0.48). In the study cohort (patients and controls), IMAT was positively correlated with self-reported fatigue score (rho=0.52, p<0.001) and inversely correlated with self-reported walking distance (rho=−0.60, p<0.001). Several markers of inflammation were associated with IMAT accumulation in patients with SLE, and gene ontology analysis showed significant enrichment for pathways associated with macrophage migration and activation in relation to IMAT.ConclusionPatients with SLE have greater IMAT accumulation than controls in the calf muscles. Increased IMAT is associated with greater fatigue and lower physical activity. Future studies should evaluate the effectiveness of interventions that improve muscle quality to alleviate fatigue in patients with SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.