Abstract-In this paper, we evaluate the vulnerability of speaker verification (SV) systems to synthetic speech. The SV systems are based on either the Gaussian mixture modeluniversal background model (GMM-UBM) or support vector machine (SVM) using GMM supervectors. We use a hidden Markov model (HMM)-based text-to-speech (TTS) synthesizer, which can synthesize speech for a target speaker using small amounts of training data through model adaptation of an average voice or background model. Although the SV systems have a very low equal error rate (EER), when tested with synthetic speech generated from speaker models derived from the Wall-Street Journal (WSJ) speech corpus, over 81% of the matched claims are accepted. This result suggests vulnerability in SV systems and thus a need to accurately detect synthetic speech. We propose a new feature based on relative phase shift (RPS), demonstrate reliable detection of synthetic speech, and show how this classifier can be used to improve security of SV systems.
In this paper, we present new results from our research into the vulnerability of a speaker verification (SV) system to synthetic speech. We use a HMM-based speech synthesizer, which creates synthetic speech for a targeted speaker through adaptation of a background model and both GMM-UBM and support vector machine (SVM) SV systems. Using 283 speakers from the Wall-Street Journal (WSJ) corpus, our SV systems have a 0.35% EER. When the systems are tested with synthetic speech generated from speaker models derived from the WSJ journal corpus, over 91% of the matched claims are accepted. We propose the use of relative phase shift (RPS) in order to detect synthetic speech and develop a GMM-based synthetic speech classifier (SSC). Using the SSC, we are able to correctly classify human speech in 95% of tests and synthetic speech in 88% of tests thus significantly reducing the vulnerability.
An HMM-based speech synthesis framework is applied to both Standard Austrian German and a Viennese dialectal variety and several training strategies for multi-dialect modeling such as dialect clustering and dialect-adaptive training are investigated. For bridging the gap between processing on the level of HMMs and on the linguistic level, we add phonological transformations to the HMM interpolation and apply them to dialect interpolation. The crucial steps are to employ several formalized phonological rules between Austrian German and Viennese dialect as constraints for the HMM interpolation. We verify the effectiveness of this strategy in a number of perceptual evaluations. Since the HMM space used is not articulatory but acoustic space, there are some variations in evaluation results between the phonological rules. However, in general we obtained good evaluation results which show that listeners can perceive both continuous and categorical changes of dialect varieties by using phonological transformations employed as switching rules in the HMM interpolation.
In this paper, we investigate imposture using synthetic speech. Although this problem was first examined over a decade ago, dramatic improvements in both speaker verification (SV) and speech synthesis have renewed interest in this problem. We use a HMM-based speech synthesizer which creates synthetic speech for a targeted speaker through adaptation of a background model. We use two SV systems: standard GMM-UBM-based and a newer SVM-based. Our results show when the systems are tested with human speech, there are zero false acceptances and zero false rejections. However, when the systems are tested with synthesized speech, all claims for the targeted speaker are accepted while all other claims are rejected. We propose a two-step process for detection of synthesized speech in order to prevent this imposture. Overall, while SV systems have impressive accuracy, even with the proposed detector, high-quality synthetic speech will lead to an unacceptably high false acceptance rate.
This paper investigates joint speaker-dependent audiovisual Hidden Semi-Markov Models (HSMM) where the visual models produce a sequence of 3D motion tracking data that is used to animate a talking head and the acoustic models are used for speech synthesis. Different acoustic, visual, and joint audiovisual models for four different Austrian German speakers were trained and we show that the joint models perform better compared to other approaches in terms of synchronization quality of the synthesized visual speech. In addition, a detailed analysis of the acoustic and visual alignment is provided for the different models. Importantly, the joint audiovisual modeling does not decrease the acoustic synthetic speech quality compared to acoustic-only modeling so that there is a clear advantage in the common duration model of the joint audiovisual modeling approach that is used for synchronizing acoustic and visual parameter sequences. Finally, it provides a model that integrates the visual and acoustic speech dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.