In this paper we determine the nonabelian tensor square of the free 2-Engel group of rank 3 and of the Burnside group on 3 generators of exponent 3. Both tensor squares are nilpotent groups of class 2. The calculatory method used is based on the concept of a crossed pairing. Some of the expansion formulas and verifications occuring in this context require extensive calculations. A computer program written in the GAP language assisted in completing these symbolic computations.
The nonabelian tensor square G⊗G of a group G is generated by the symbols g⊗h, g, h ∈ G, subject to the relations,for all g, g′, h, h′ ∈ G, where The tensor square is a special case of the nonabelian tensor product which has its origins in homotopy theory. It was introduced by R. Brown and J. L. Loday in [4] and [5], extending ideas of Whitehead in [6].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.