Abstract. The Konstanz Information Miner is a modular environment, which enables easy visual assembly and interactive execution of a data pipeline. It is designed as a teaching, research and collaboration platform, which enables simple integration of new algorithms and tools as well as data manipulation or visualization methods in the form of new modules or nodes. In this paper we describe some of the design aspects of the underlying architecture and briefly sketch how new nodes can be incorporated.
The Konstanz Information Miner is a modular environment which enables easy visual assembly and interactive execution of a data pipeline. It is designed as a teaching, research and collaboration platform, which enables easy integration of new algorithms, data manipulation or visualization methods as new modules or nodes. In this paper we describe some of the design aspects of the underlying architecture and briefly sketch how new nodes can be incorporated.
OVERVIEWLarge volumes of data are often generated during simulations and the need for modular data analysis environments has increased dramatically over the past years. In order to make use of the vast variety of data analysis methods around, it is essential that such an environment is easy and intuitive to use, allows for quick and interactive changes to the analysis and enables the user to visually explore the results. To meet these challenges a data pipelining environment is an appropriate model.
We present an algorithm to find fragments in a set of molecules that help to discriminate between different classes of, for instance, activity in a drug discovery context. Instead of carrying out a brute-force search, our method generates fragments by embedding them in all appropriate molecules in parallel and prunes the search tree based on a local order of the atoms and bonds, which results in substantially faster search by eliminating the need for frequent, computationally expensive reembeddings and by suppressing redundant search. We prove the usefulness of our algorithm by demonstrating the discovery of activity-related groups of chemical compounds in the well-known National Cancer Institute's HIV-screening dataset.
Summary
This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.