Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, an ability to insert light sources, detectors, sensors and other components into precise locations of the deep brain could yield versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.
Stress is a complex human experience having both positive and negative motivational properties. When chronic and uncontrollable, the adverse effects of stress on human health are considerable and yet poorly understood. Here, we report that the dysphoric properties of chronic stress are encoded by the endogenous opioid peptide dynorphin acting on specific stress-related neuronal circuits. Using different forms of stress presumed to evoke dysphoria in mice, we found that repeated forced swim and inescapable footshock both produced aversive behaviors that were blocked by a -opioid receptor (KOR) antagonist and absent in mice lacking dynorphin. Injection of corticotropin-releasing factor (CRF) or urocortin III, key mediators of the stress response, produced place aversion that was also blocked by dynorphin gene deletion or KOR antagonism. CRF-induced place aversion was blocked by the CRF 2 receptor antagonist antisauvigine-30, but not by the CRF 1 receptor antagonist antalarmin. In contrast, place aversion induced by the KOR agonist U50,488 was not blocked by antisauvigine-30. These results suggest that the aversive effects of stress were mediated by CRF 2 receptor stimulation of dynorphin release and subsequent KOR activation. Using a phospho-selective antibody directed against the activated KOR to image sites of dynorphin action in the brain, we found that stress and CRF each caused dynorphin-dependent KOR activation in the basolateral amygdala, nucleus accumbens, dorsal raphe, and hippocampus. The convergence of stress-induced aversive inputs on the dynorphin system was unexpected, implicates dynorphin as a key mediator of dysphoria, and emphasizes -receptor antagonists as promising therapeutics.
Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo.
Stress is a complex experience that carries both aversive and motivating properties. Chronic stress causes an increase in the risk of depression, is well known to increase relapse of drug seeking behavior, and can adversely impact health. Several brain systems have been demonstrated to be critical in mediating the negative affect associated with stress, and recent evidence directly links the actions of the endogenous opioid neuropeptide dynorphin in modulating mood and increasing the rewarding effects of abused drugs. These results suggest that activation of the dynorphin/kappa opioid receptor (KOR) system is likely to play a major role in the pro-addictive effects of stress. This review explores the relationship between dynorphin and corticotropin releasing factor (CRF) in the induction of dysphoria, the potentiation of drug seeking, and stress-induced reinstatement. We also provide an overview of the signal transduction events responsible for CRF and dynorphin/KOR-dependent behaviors. Understanding the recent work linking activation of CRF and dynorphin/KOR systems and their specific roles in brain stress systems and behavioral models of addiction provides novel insight to neuropeptide systems that regulate affective state.
The molecular mechanisms mediating stress-induced dysphoria in humans and conditioned place aversion in rodents are unknown. Here, we show that repeated swim stress caused activation of both -opioid receptor (KOR) and p38 mitogen-activated protein kinase (MAPK) coexpressed in GABAergic neurons in the nucleus accumbens, cortex, and hippocampus. Sites of activation were visualized using phosphoselective antibodies against activated receptors (KOR-P) and against phospho-p38 MAPK. Surprisingly, the increase in P-p38-IR caused by swim-stress exposure was completely KOR dependent; P-p38-IR did not increase in KOR(Ϫ/Ϫ) knock-out mice subjected to the same swim-paradigm or in wild-type mice pretreated with the KOR antagonist norbinaltorphimine. To understand the relationship between p38 activation and the behavioral effects after KOR activation, we administered the p38 inhibitor SB203580 [4-(4- fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (i.c.v.)] and found that it selectively blocked the conditioned place aversion caused by the agonist trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (U50488) andthe KOR-dependent swim stress-induced immobility while not affecting -opioid analgesia or nonselectively affecting associative learning. We found that the mechanism linking KOR and p38 activation in vivo was consistent with our previous in vitro data suggesting that -arrestin recruitment is required; mice lacking G-protein-coupled receptor kinase 3 also failed to increase p-p38-IR after KOR activation in vivo, failed to show swim stress-induced immobility, or develop conditioned place aversion to U50488. Our results indicate that activation of p38 MAPK signaling by the endogenous dynorphin--opioid system likely constitutes a key component of the molecular mechanisms mediating the aversive properties of stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.