This Review gives an overview of precursor systems, their processing, and the final precursor-dependent structure of carbon fibers (CFs) including new developments in precursor systems for low-cost CFs. The following CF precursor systems are discussed: poly(acrylonitrile)-based copolymers, pitch, cellulose, lignin, poly(ethylene), and new synthetic polymeric precursors for high-end CFs. In addition, structure-property relationships and the different models for describing both the structure and morphology of CFs will be presented.
The structure of sulfur-poly(acrylonitrile)-based Li-sulfur
batteries
is elucidated and correlated with the electrochemical performance
of such devices. Apart from the poly(acrylonitrile)-derived backbone,
thioamide as well as poly(sulfide) structures are proposed. Furthermore,
the intermediary formation of S8 during cycling and the
role of the electrolyte in its reintegration during charging into
are addressed. In summary, a comprehensive picture of the chemistry
and electrochemistry of Li-sulfur batteries is presented.
The properties, structure, and processing of carbon fibers are reviewed. Carbon fibers are made from several precursors, with PAN being the dominating precursor in the market. Carbon fibers have high tensile strength, high modulus (up to the theoretical limit of around 1000 GPa), and low density, depending on the structure and processing in very limited combinations. Both the structure and composition of the precursor affect the properties of the resulting carbon fibers significantly. Although the essential processes for carbon fiber production are similar, different precursors require different processing conditions in order to achieve improved performance. Future developments are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.