Prior laboratory studies of Trichodesmium have shown a high iron requirement that is consistent with the biochemical demand for iron in the enzyme nitrogenase. Summer delivery of iron, in the form of Saharan dust, may provide an explanation for Trichodesmium blooms observed in offshore waters of the West Florida shelf over the last 50 yr. During ecology and oceanography of harmful algal blooms (ECOHAB) field studies, background iron levels (0.1-0.5 nmol kg Ϫ1 ) were found at the surface during periods of minimal dust delivery (May 2000 and October 1999). In contrast, total dissolved iron concentrations on the order of ϳ16 nmol kg Ϫ1 were measured at the West Florida shelf-break after a July 1999 Saharan dust event that was identified by advanced very high resolution radiometer (AVHRR) imagery, ground-based radiometers, air mass analysis, and aerosol samples (dust and non-sea-salt nitrate) collected throughout South Florida. The Trichodesmium response following this July dust event was a 100-fold increase over background biomass, reaching a surface stock of ϳ20 colonies L Ϫ1. Surface dissolved concentrations of both inorganic and organic phosphorus decreased below detectable limits during this bloom. Dissolved organic nitrogen concentrations associated with the bloom (15-20 M) were 3-4-fold greater than background and much larger than ambient NO concentrations (Ͻ0.5 mol kg Ϫ1 ). If all dissolved organic Ϫ 3 nitrogen (DON) is converted to urea and ammonium, this organic nitrogen could have supported the red tide of Ͼ20 g chl L Ϫ1 of the toxic dinoflagellate, Gymnodinium breve, found along the West Florida coast during October 1999.
When normal-hearing adults and children are required to detect a 1000-Hz tone in a random-frequency multitone masker, masking is often observed in excess of that predicted by traditional auditory filter models. The excess masking is called informational masking. Though individual differences in the effect are large, the amount of informational masking is typically much greater in young children than in adults [Oh et al., J. Acoust. Soc. Am. 109, 2888-2895 (2001)]. One factor that reduces informational masking in adults is spatial separation of the target tone and masker. The present study was undertaken to determine whether or not a similar effect of spatial separation is observed in children. An extreme case of spatial separation was used in which the target tone was presented to one ear and the random multitone masker to the other ear. This condition resulted in nearly complete elimination of masking in adults. In young children, however, presenting the masker to the nontarget ear typically produced only a slight decrease in overall masking and no change in informational masking. The results for children are interpreted in terms of a model that gives equal weight to the auditory filter outputs from each ear.
Masked threshold for a pure-tone signal can be substantially elevated whenever the listener is uncertain about the spectral or temporal properties of the masker, an effect referred to as auditory informational masking. Individual differences in the effect are large, with young children being most susceptible. When masker uncertainty is introduced by randomizing the frequencies of a multitone masker on each presentation, the function relating a child's pure-tone signal threshold to the number of masker components is found to be substantially elevated above that of most adults. The age effect and the individual differences among adults are not well understood, though a difference in the shapes of the masking functions suggests that different detection strategies may be involved. The present study reports results from a principal components analysis of informational masking functions obtained from 38 normal-hearing children ranging in age from 4 to 16 years and 46 normal-hearing adults ranging in age from 19 to 38 years. The premise underlying the analysis is that if different detection strategies are involved, they should add independent sources of variance to the masking functions. Hence, more than one principal component (PC) should be required to account for a substantial proportion of the variance in these functions. The results, instead, supported the operation of a single underlying strategy with all but 17% of the variance accounted for by the first PC within and across age groups. An analysis of variance on the first two PCs showed that only the first changed with age, and a cluster analysis of the masking functions showed complete separation of clusters along this PC for all but 1 listener. The results are taken to suggest that large individual differences in informational masking at all ages reflect differences in the extent to which masker uncertainty adds variance to the decision variable of an otherwise optimal decision strategy.
The term informational masking has traditionally been used to refer to elevations in signal threshold resulting from masker uncertainty. In the present study, the method of constant stimuli was used to obtain complete psychometric functions (PFs) from 44 normal-hearing listeners in conditions known to produce varying amounts of informational masking. The listener's task was to detect a pure-tone signal in the presence of a broadband noise masker (low masker uncertainty) and in the presence of multitone maskers with frequencies and amplitudes that varied at random from one presentation to the next (high masker uncertainty). Relative to the broadband noise condition, significant reductions were observed in both the slope and the upper asymptote of the PF for multitone maskers producing large amounts of informational masking. Slope was affected more for some listeners and conditions while asymptote was affected more for others; consequently, neither parameter alone was highly predictive of individual thresholds or the amount of informational masking. Mean slopes and asymptotes varied nonmonotonically with the number of masker components in a manner similar to mean thresholds, particularly when the estimated effect of energetic masking on thresholds was subtracted out. As in past studies, the threshold data were well described by a model in which trial-by-trial judgments are based on a weighted sum of levels in dB at the output of independent auditory filters. The psychometric data, however, complicated the model's interpretation in two ways: First, they suggested that, depending on the listener and condition, the weights can either reflect a fixed influence of masker components on each trial or the effect of occasionally mistaking a masker component for the signal from trial to trial. Second, they indicated that in either case the variance of the underlying decision variable as estimated from PF slope is not by itself great enough to account for the observed changes in informational masking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.