MGnify (http://www.ebi.ac.uk/metagenomics) provides a free to use platform for the assembly, analysis and archiving of microbiome data derived from sequencing microbial populations that are present in particular environments. Over the past 2 years, MGnify (formerly EBI Metagenomics) has more than doubled the number of publicly available analysed datasets held within the resource. Recently, an updated approach to data analysis has been unveiled (version 5.0), replacing the previous single pipeline with multiple analysis pipelines that are tailored according to the input data, and that are formally described using the Common Workflow Language, enabling greater provenance, reusability, and reproducibility. MGnify's new analysis pipelines offer additional approaches for taxonomic assertions based on ribosomal internal transcribed spacer regions (ITS1/2) and expanded protein functional annotations. Biochemical pathways and systems predictions have also been added for assembled contigs. MGnify's growing focus on the assembly of metagenomic data has also seen the number of datasets it has assembled and analysed increase six-fold. The non-redundant protein database constructed from the proteins encoded by these assemblies now exceeds 1 billion sequences. Meanwhile, a newly developed contig viewer provides fine-grained visualisation of the assembled contigs and their enriched annotations.
The khmer package is a freely available software library for working efficiently with fixed length DNA words, or k-mers. khmer provides implementations of a probabilistic k-mer counting data structure, a compressible De Bruijn graph representation, De Bruijn graph partitioning, and digital normalization. khmer is implemented in C++ and Python, and is freely available under the BSD license at https://github.com/dib-lab/khmer/.
Galaxy is a mature, browser accessible workbench for scientific computing. It enables scientists to share, analyze and visualize their own data, with minimal technical impediments. A thriving global community continues to use, maintain and contribute to the project, with support from multiple national infrastructure providers that enable freely accessible analysis and training services. The Galaxy Training Network supports free, self-directed, virtual training with >230 integrated tutorials. Project engagement metrics have continued to grow over the last 2 years, including source code contributions, publications, software packages wrapped as tools, registered users and their daily analysis jobs, and new independent specialized servers. Key Galaxy technical developments include an improved user interface for launching large-scale analyses with many files, interactive tools for exploratory data analysis, and a complete suite of machine learning tools. Important scientific developments enabled by Galaxy include Vertebrate Genome Project (VGP) assembly workflows and global SARS-CoV-2 collaborations.
Computational workflows describe the complex multi-step methods that are used for data collection, data preparation, analytics, predictive modelling, and simulation that lead to new data products. They can inherently contribute to the FAIR data principles: by processing data according to established metadata; by creating metadata themselves during the processing of data; and by tracking and recording data provenance. These properties aid data quality assessment and contribute to secondary data usage. Moreover, workflows are digital objects in their own right. This paper argues that FAIR principles for workflows need to address their specific nature in terms of their composition of executable software steps, their provenance, and their development.
BackgroundThe automation of data analysis in the form of scientific workflows has become a widely adopted practice in many fields of research. Computationally driven data-intensive experiments using workflows enable automation, scaling, adaptation, and provenance support. However, there are still several challenges associated with the effective sharing, publication, and reproducibility of such workflows due to the incomplete capture of provenance and lack of interoperability between different technical (software) platforms.ResultsBased on best-practice recommendations identified from the literature on workflow design, sharing, and publishing, we define a hierarchical provenance framework to achieve uniformity in provenance and support comprehensive and fully re-executable workflows equipped with domain-specific information. To realize this framework, we present CWLProv, a standard-based format to represent any workflow-based computational analysis to produce workflow output artefacts that satisfy the various levels of provenance. We use open source community-driven standards, interoperable workflow definitions in Common Workflow Language (CWL), structured provenance representation using the W3C PROV model, and resource aggregation and sharing as workflow-centric research objects generated along with the final outputs of a given workflow enactment. We demonstrate the utility of this approach through a practical implementation of CWLProv and evaluation using real-life genomic workflows developed by independent groups.ConclusionsThe underlying principles of the standards utilized by CWLProv enable semantically rich and executable research objects that capture computational workflows with retrospective provenance such that any platform supporting CWL will be able to understand the analysis, reuse the methods for partial reruns, or reproduce the analysis to validate the published findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.