[reaction: see text] The Heck reaction of phenyl halides with styrene using a series of related PCP pincer palladium(II) complexes was studied in order to evaluate the effect of ligand structure and electronics on the catalytic activity and to investigate the nature of the catalyst species. We suggest these pincer complexes are precatalysts for highly active forms of metallic palladium. This conclusion is based on kinetic studies (induction periods, sigmoidal kinetics), Hg drop tests, quantitative poisoning experiments, and NMR studies.
Three methods for the large scale (50-100 g) separation of the secondary phobanes 9-phosphabicyclo[3.3.1]nonane (s-PhobPH) and 9-phosphabicyclo[4.2.1]nonane (a-PhobPH) are described in detail. Selective protonation of s-PhobPH with aqueous HCl in the presence of a-PhobPH is an efficient way to obtain large quantities of a-PhobPH. Selective oxidation of a-PhobPH in an acidified mixture of a-PhobPH and s-PhobPH is an efficient way to obtain large quantities of s-PhobPH. The crystalline, air-stable phosphonium salts [s-PhobP(CH(2)OH)(2)]Cl and [a-PhobP(CH(2)OH)(2)]Cl can be separated by a selective deformylation with aqueous NaOH. a-PhobPH is shown to be a(5)-PhobPH in which the H lies over the five-membered ring. The isomeric a(7)-PhobPH has been detected but isomerizes to a(5)-PhobPH rapidly in the presence of water. s-PhobPH is more basic than a-PhobPH by about 2 pK(a) units in MeOH. Treatment of s-PhobPH with BH(3).THF gives s-PhobPH(BH(3)) and similarly a-PhobPH gives a(5)-PhobPH(BH(3)). Isomerically pure s-PhobPCl and a(5)-PhobPCl are prepared by reaction of the corresponding PhobPH with C(2)Cl(6). The n-butyl phobane s-PhobPBu is prepared by nucleophilic (using s-PhobPH or s-PhobPLi) and electrophilic (using s-PhobPCl) routes. Isomerically pure a(5)-PhobPBu is prepared by treatment of a-PhobPLi with (n)BuBr and a(7)-PhobPBu is prepared by quaternization of a-PhobPH with (n)BuBr followed by deprotonation. From the rates of conversion of a(7)-PhobPBu to a(5)-PhobPBu, the DeltaG(double dagger) (403 K) for P-inversion is calculated to be 38.1 kcal mol(-1) (160 kJ mol(-1)). The donor properties of the individual isomers of PhobPBu were assessed from the following spectroscopic measurements: (i) (1)J(PSe) for PhobP(Se)Bu; (ii) nu(CO) for trans-[RhCl(CO)(PhobPBu)(2)], (iii) (1)J(PtP) for the PEt(3) in trans-[PtCl(2)(PEt(3))(PhobPBu)]. In each case, the data are consistent with the order of sigma-donation being a(7)-PhobPBu > s-PhobPBu > a(5)-PhobPBu. This same order was found when the affinity of the PhobPBu isomers for platinum(II) was investigated by determining the relative stabilities of [Pt(CH(3))(s-PhobPBu)(dppe)][BPh(4)], [Pt(CH(3))(a(5)-PhobPBu)(dppe)][BPh(4)], and [Pt(CH(3))(a(7)-PhobPBu)(dppe)][BPh(4)] from competition experiments. Calculations of the relative stabilities of the isomers of PhobPH, [PhobPH(2)](+), and PhobPH(BH(3)) support the conclusions drawn from the experimental results. Moreover, calculations on the frontier orbital energies of PhobPMe isomers and their binding energies to H(+), BH(3), PdCl(3)(-), and PtCl(3)(-) corroborate the experimental observation of the order of sigma-donation being a(7)-PhobPR > s-PhobPR > a(5)-PhobPR. The calculated He(8) steric parameter shows that the bulk of the isomers increases in the order a(7)-PhobPR < s-PhobPR < a(5)-PhobPR. The crystal structures of [a-PhobP(CH(2)OH)(2)][s-PhobP(CH(2)OH)(2)]Cl(2), cis-[PtCl(2)(a(5)-PhobPCH(2)OH)(2)], trans-[PtCl(2)(s-PhobPBu)(2)], and trans-[PtCl(2)(a(7)-PhobPBu)(2)] are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.