Over the past two decades there has been a steady increase in the study and management of wildlife diseases. This trend has been driven by the perception of an increase in emerging zoonotic diseases and the recognition that wildlife can be a critical factor for controlling infectious diseases in domestic animals. Cervids are of recent concern because, as a group, they present a number of unique challenges. Their close ecological and phylogenetic relationship to livestock species places them at risk for receiving infections from, and reinfecting livestock. In addition, cervids are an important resource; revenue from hunting and viewing contribute substantially to agency budgets and local economies. A comprehensive coverage of infectious diseases in cervids is well beyond the scope of this chapter. In North America alone there are a number of infectious diseases that can potentially impact cervid populations, but for most of these, management is not feasible or the diseases are only a potential or future concern. We focus this chapter on three diseases that are of major management concern and the center of most disease research for cervids in North America: bovine tuberculosis, chronic wasting disease, and brucellosis. We discuss the available data and recent advances in modeling and management of these diseases.
Identifying drivers of contact rates among individuals is critical to understanding disease dynamics and implementing targeted control measures. We studied the interaction patterns of 149 female elk (Cervus canadensis) distributed across five different regions of western Wyoming over three years, defining a contact as an approach within one body length (-2 min). Using hierarchical models that account for correlations within individuals, pairs, and groups, we found that pairwise contact rates within a group declined by a factor of three as group sizes increased 33-fold. Per capita contact rates, however, increased with group size according to a power function, such that female elk contact rates fell in between the predictions of density- or frequency-dependent disease models. We found similar patterns for the duration of contacts. Our results suggest that larger elk groups are likely to play a disproportionate role in the disease dynamics of directly transmitted infections in elk. Supplemental feeding of elk had a limited impact on pairwise interaction rates and durations, but per capita rates were more than two times higher on feeding grounds. Our statistical approach decomposes the variation in contact rate into individual, dyadic, and environmental effects, and provides insight into factors that may be targeted by disease control programs. In particular, female elk contact patterns were driven more by environmental factors such as group size than by either individual or dyad effects.
Advances in acquiring and analyzing the spatial attributes of data have greatly enhanced the potential utility of wildlife disease surveillance data for addressing problems of ecological or economic importance. We present an approach for using wildlife disease surveillance data to identify areas for (or of) intervention, to spatially delineate paired treatment and control areas, and then to analyze these nonrandomly selected sites in a meta-analysis framework via before-after-control impact (BACI) estimates of effect size. We apply these methods to evaluate the effectiveness of attempts to reduce chronic wasting disease (CWD) prevalence through intensive localized culling of mule deer (Odocoileus hemionus) in north-central Colorado, USA. Areas where surveillance data revealed high prevalence or case clusters were targeted by state wildlife management agency personnel for focal scale (on average <17 km2) culling, primarily via agency sharpshooters. Each area of sustained culling that we could also identify as unique by cluster analysis was considered a potential treatment area. Treatment areas, along with spatially paired control areas that we constructed post hoc in a case-control design (collectively called "management evaluation sites"), were then delineated using home range estimators. Using meta-BACI analysis of CWD prevalence data for all management evaluation sites, the mean effect size (change of prevalence on treatment areas minus change in prevalence on their paired control areas) was 0.03 (SE = 0.03); mean effect size on treatment areas was not greater than on paired control areas. Excluding cull samples from prevalence estimates or allowing for an equal or greater two-year lag in system responses to management did not change this outcome. We concluded that management benefits were not evident, although whether this represented true ineffectiveness or was a result of lack of data or insufficient duration of treatment could not be discerned. Based on our observations, we offer recommendations for designing a management experiment with 80% power to detect a 0.10 drop in prevalence over a 6-12-year period.
The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km2; range = [95–10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.