Inflammation resolution is important for scar formation following myocardial infarction (MI) and requires the coordinated actions of macrophages and fibroblasts. In this study, we hypothesized that exogenous interleukin-10 (IL-10), an anti-inflammatory cytokine, promotes post-MI repair through actions on these cardiac cell types. To test this hypothesis, C57BL/6J mice (male, 3- to 6-month old, n = 24/group) were treated with saline or IL-10 (50 μg/kg/day) by osmotic mini-pump infusion starting at day (d) 1 post-MI and sacrificed at d7 post-MI. IL-10 infusion doubled plasma IL-10 concentrations by d7 post-MI. Despite similar infarct areas and mortality rates, IL-10 treatment significantly decreased LV dilation (1.6-fold for end-systolic volume and 1.4-fold for end-diastolic volume) and improved ejection fraction 1.8-fold (both p < 0.05). IL-10 treatment attenuated inflammation at d7 post-MI, evidenced by decreased numbers of Mac-3+ macrophages in the infarct (p < 0.05). LV macrophages isolated from d7 post-MI mice treated with IL-10 showed significantly elevated gene expression of M2 markers (Arg1, Ym1, and TGF-β1; all p < 0.05). We further performed RNA-seq analysis on post-MI cardiac macrophages and identified 410 significantly different genes (155 increased, 225 decreased by IL-10 treatment). By functional network analysis grouping, the majority of genes (133 out of 410) were part of the cellular assembly and repair functional group. Of these, hyaluronidase 3 (Hyal3) is the most important feature identified by p value. IL-10 treatment decreased Hyal3 by 28%, which reduced hyaluronan degradation and limited collagen deposition (all p < 0.05). In addition, ex vivo IL-10 treatment increased fibroblast activation (proliferation, migration, and collagen production), an effect that was both directly and indirectly influenced by macrophage M2 polarization. Combined, our results indicate that in vivo infusion of IL-10 post-MI improves the LV microenvironment to dampen inflammation and facilitate cardiac wound healing.
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3–6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI. Electronic supplementary materialThe online version of this article (10.1007/s00395-018-0686-x) contains supplementary material, which is available to authorized users.
SummaryLarge numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.PaperClip
Mutant p53 (mtp53) promotes chemotherapy resistance through multiple mechanisms, including disabling proapoptotic proteins and regulating gene expression. Comparison of genome wide analysis of mtp53 binding revealed that the ETS-binding site motif (EBS) is prevalent within predicted mtp53-binding sites. We demonstrate that mtp53 regulates gene expression through EBS in promoters and that ETS2 mediates the interaction with this motif. Importantly, we identified TDP2, a 59-tyrosyl DNA phosphodiesterase involved in the repair of DNA damage caused by etoposide, as a transcriptional target of mtp53. We demonstrate that suppression of TDP2 sensitizes mtp53-expressing cells to etoposide and that mtp53 and TDP2 are frequently overexpressed in human lung cancer; thus, our analysis identifies a potentially ''druggable'' component of mtp53's gain-of-function activity.[Keywords: TDP2; cancer; p53] Supplemental material is available for this article. One of the definitive characteristics of the mutant p53 (mtp53) protein is that it can alter the cellular phenotype, resulting in the acquisition of gain-of-function activities such as abnormal cell growth, suppression of apoptosis, chemotherapy resistance, increased angiogenesis, and metastasis ( For example, mtp53 can interact with its family members, p63 and p73, and disable their ability to induce apoptosis (Di Como et al. 1999;Marin et al. 2000;Strano et al. 2000Strano et al. , 2002Gaiddon et al. 2001;Bergamaschi et al. 2003;Irwin et al. 2003;Lang et al. 2004). mtp53 can also interact with other transcription factors (such as NF-Y, E2F1, VDR, and p63) and thereby can be recruited to target genes that have consensus binding sites for these transcription factors (Di Agostino et al. 2006;Adorno et al. 2009;Fontemaggi et al. 2009;Stambolsky et al. 2010). Notably, some of these interactions help explain how the mtp53 protein can deregulate gene expression and promote abnormal cell growth, angiogenesis, and metastasis (Di Agostino et al. 2006;Adorno et al. 2009;Fontemaggi et al. 2009;Muller et al. 2009Muller et al. , 2011. However, thus far, none of these transcription factors have been shown to play a fundamental role in regulating the expression of genes that can confer chemotherapy resistance by modulating the response to DNA damage. The main goal of this study was to identify a transcriptional regulatory mechanism through which mtp53 can promote chemotherapy resistance. Results Identification of mtp53 target genesTo identify transcriptional targets of mtp53, we employed two different approaches: chromatin immunoprecipitation (ChIP)-on-chip and ChIP combined with deep sequencing (ChIP-seq). The ChIP-on-chip was performed with Nimblegen arrays that have oligonucleotide probes for all of the promoters in the human genome (Nimblegen Promoter Arrays). The ChIP-seq analysis was performed using the Illumina platform. We conducted these analyses in the Li-Fraumeni cell line MDAH087, which expresses only the R248W mtp53 protein (Bischoff et al. 1990). The ChIP-on-chip analysis identif...
An F 2 population (n = 151) derived from Dahl salt-sensitive (S) and Lewis rats was raised on a 8% NaCl diet for 9 weeks and analyzed for blood pressure quantitative trait loci (QTL) by use of a whole genome scan. Chromosomes 5 and 10 yielded lod scores for linkage to blood pressure that were significant; chromosomes 1, 2, 3, 8, 16, 17, and 18 gave lod scores suggestive for linkage. Chromosome 7 gave a significant signal for heart weight with a lesser effect on blood pressure. Congenic strains were constructed by introgressing Lewis low-blood-pressure QTL alleles for chromosomes 1, 5, 10, and 17 into the S genetic background. Congenic strains for chromosomes 1, 5, and 10 had significantly lower blood pressure than S, proving the existence of QTL on these chromosomes, but the chromosome 17 congenic strain failed to trap a contrasting QTL allele. The QTL allele increasing blood pressure originated from S rats for all QTL except those on chromosomes 2 and 7 in which the Lewis allele increased blood pressure. Interactions between each QTL and every other locus in the genome scan yielded significant interactions between chromosomes 10 and 4, and between chromosomes 2 and 3.More than 30 years ago, Dahl et al. (1963) selectively bred rats for sensitivity (S rats) and resistance (R rats) to the hypertensive effect of a high-salt (NaCl) diet. Inbred strains of S and R rats were subsequently developed from Dahl's selectively bred lines (Rapp and Dene 1985). These strains are the prototypic animal model for studying salt-induced hypertension.S rats develop hypertension even on a low-salt diet, but this is markedly exacerbated by increased salt intake (Dahl et al. 1963;Rapp and Dene 1985). Chromosomal regions containing blood pressure quantitative trait loci (QTL) have been detected by the candidate gene approach starting in 1972 with a biochemical genetic marker for steroid 11-hydroxylase Dahl 1972a, 1976), and then in 1989 when restriction fragment-length polymorphisms first became available (Rapp et al. 1989). More recently, additional chromosomal regions containing blood pressure QTL were identified around candidate genes by use of Dahl rats and more modern genetic markers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.