Twenty malaria-naive volunteers received a recombinant Plasmodium falciparum malaria vaccine (RTS,S) containing 19 NANP repeats and the carboxy terminus (amino acids 210-398) of the circumsporozoite (CS) antigen coexpressed in yeast with hepatitis B surface antigen. Ten received vaccine adjuvanted with alum, and 10 received vaccine adjuvanted with alum plus 3-deacylated monophosphoryl lipid A (MPL). Both formulations were well tolerated and immunogenic. MPL enhanced CS antibody levels (measured by ELISA, immunofluorescence, and inhibition of sporozoite invasion assays). After sporozoite challenge, 6 of 6 in the alum group and 6 of 8 in the alum-MPL group developed patent malaria. Protected subjects had higher levels of CS antibody titers on day of challenge than did nonprotected subjects. After immunization, 1 protected subject had increased cytotoxic T lymphocyte activity against CS and recall of memory T cell responses to RTS,S and selected CS.
Two structurally distinct nuclear genes code for cytoplasmic small subunit ribosomal RNA's in the parasite Plasmodium berghei. Stable transcripts from one of the ribosomal RNA genes are found almost exclusively in those stages of the life cycle that develop in the mosquito. When the parasite infects the mammalian host, transcripts from the second gene become the predominant small subunit ribosomal RNA species.
BackgroundGene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.Methodology/Principal FindingsThe vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant.SignificanceThe DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection.Trial RegistrationClinicalTrials.govNCT00870987.
Protective immunity against malaria can be obtained by vaccination with irradiated sporozoites. The protective antigens known as circumsporozoite (CS) proteins, are polypeptides that cover the surface membrane of the parasite. The CS proteins contain species-specific immunodominant epitopes formed by tandem repeated sequences of amino acids. Here it is shown that the dominant epitope of Plasmodium falciparum is contained in the synthetic dodecapeptide Asn-Ala-Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala-Pro or (NANP)3. Monoclonal antibodies and most or all polyclonal human antibodies to the sporozoites react with (NANP)3, and polyclonal antibodies raised against the synthetic peptide (NANP)3 react with the surface of the parasite and neutralize its infectivity. Since (NANP)3 repeats are present in CS proteins of P. falciparum from many parts of the world, this epitope is a logical target for vaccine development.
A 12 amino-acid synthetic peptide (NANP)3 comprising the immunodominant epitope of Plasmodium falciparum circumsporozoite protein was conjugated to tetanus toxoid (TT), adjuvanted with aluminium hydroxide, and administered intramuscularly in three doses at monthly intervals to 35 healthy males as a malaria vaccine. No significant adverse reactions were noted, with mild soreness at the injection site the only common symptom. Seroconversions against NANP occurred in 53% and 71% of recipients of 100 or 160 micrograms, respectively, measured by enzyme-linked immunosorbent assay (ELISA). Most ELISA-positive sera reacted with sporozoites by indirect immunofluorescence (IFA). Three vaccinees with the highest ELISA and IFA titres and four unimmunized controls were challenged with P. falciparum sporozoites introduced via the bites of infective Anopheles mosquitoes. Blood stage parasites were detected in all controls by 10 days (mean 8.5 days, range 7-10). In contrast, the two vaccinees who became infected did not manifest parasitaemia until day 11 and the third vacinee showed neither parasites nor symptoms during the 29 day observation period. This first synthetic peptide parenteral vaccine against a communicable disease tested in man is safe and stimulates biologically active antibodies. These observations encourage the development of improved vaccine formulations which, by enhancing immunogenicity, may lead to practical vaccines to assist in the control of falciparum malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.