Reduced oxygen levels (hypoxia) is one of the most important factors influencing clinical outcome after radiotherapy. This is primarily because hypoxic cells are resistant to radiation treatment; hence, the greater the number of clonogenic cancer stem cells that exist under hypoxia, the lower the local tumour control. Reduced local control will influence overall survival, as may the hypoxic conditions by increasing malignant progression; however, to fight hypoxia, we should first be able to see it. We need noninvasive approaches that can accurately and reliably image hypoxia in tumours, especially using techniques that are routinely available in the clinic, such as PET, MRI and CT. All these imaging methods are already under clinical evaluation in this context. Such data should allow us to identify those patients on an individual basis who have hypoxic tumours and, thus, at the very least should receive some form of hypoxic modifier in conjunction with radiotherapy. Alternatively, the radiation dose could be either increased to the whole tumour or, if the imaging is accurate enough, only to the hypoxic subvolumes. The aim of this Review is to critically assess the potential use of imaging to help improve clinical outcome to radiotherapy.
Vascular and angiogenic processes provide an important target for novel cancer therapeutics. Dynamic contrast-enhanced magnetic resonance imaging is being used increasingly to noninvasively monitor the action of these therapeutics in early-stage clinical trials. This publication reports the outcome of a workshop that considered the methodology and design of magnetic resonance studies, recommending how this new tool might best be used.
BACKGROUND. Tumor endothelium represents a valuable target for cancer therapy. The vasculature plays a critical role in the survival and continued growth of solid tumor masses; in addition, the inherent differences between tumor blood vessels and blood vessels associated with normal tissue make the tumor vasculature a unique target on which to base the design of novel therapeutics, which may allow highly selective treatment of malignant disease. Therapeutic strategies that target and disrupt the already formed vessel networks of growing tumors are actively being pursued. The goal of these approaches is to induce a rapid and catastrophic shutdown of the vascular function of the tumor so that blood flow is arrested and tumor cell death due to the resulting oxygen and nutrient deprivation and buildup of waste products occurs. METHODS. Biologic approaches and small-molecule drugs that can be used to damage tumor vasculature have been identified. Physiologic, histologic/morphologic, and immunohistochemical assessments have demonstrated that profound disruption of the tumor vessel network can be observed minutes to hours after treatment. The small-molecule agents that have made the greatest advances in the clinical setting (5,6-dimethylxanthenone-4-acetic acid [DMXAA], combretastatin A4 disodium phosphate [CA4DP], and ZD6126) are the focus of the current review. RESULTS. Loss of patent blood vessels, decreased tumor blood flow, extensive necrosis, and secondary ischemia-induced tumor cell death have been well documented in a variety of preclinical tumor models treated with agents such as DMXAA, CA4DP, and ZD6126. The use of such agents in conjunction with irradiation and other chemotherapeutic agents has led to improved treatment outcomes. CONCLUSIONS. The targeting of tumors' supportive blood vessel networks could lead to improvements in cancer cure rates. It is likely that this approach will prove to be most efficacious when used in concert with conventional treatment strategies. Cancer 2004;100:2491-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.