Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.
The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire nonredundant sequences of the CAZy database. The second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit, and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.
Despite its potential importance in obesity and related disorders, little is known about regulation of lipogenesis in human adipose tissue. To investigate this area at the molecular and mechanistic levels, we studied lipogenesis and the regulation of 1 of its core enzymes, fatty acid synthase (FAS), in human adipose tissue in response to hormonal and nutritional manipulation. As a paradigm for lipogenic genes, we cloned the upstream region of the human FAS gene, compared its sequence to that of FAS orthologs from other species, and identified important regulatory elements that lie upstream of the FAS coding region. Lipogenesis, as assessed by glucose incorporation into lipids, was increased by insulin and more so by the combination of insulin and dexamethasone (Dex, a potent glucocorticoid analogue). In parallel, FAS expression, activity, and gene transcription rate were also significantly increased by these treatments. We also showed that linoleic acid, a representative PUFA, attenuated the actions of insulin and Dex on fatty acid and lipid synthesis as well as FAS activity and expression. Using reporter assays, we determined that the regions responsible for hormonal regulation of the FAS gene lie in the proximal portion of the gene's 5'-flanking region, within which we identified an insulin response element similar to the E-box sequence we identified previously in the rat FAS gene. In summary, we demonstrated that lipogenesis occurs in human adipose tissue and can be induced by insulin, further enhanced by glucocorticoids, and suppressed by PUFA in a hormone-dependent manner.
The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral “tree of life”. However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.