Since Þrst discovered in the New York City area in 1999, West Nile virus (WNV) has become established over much of the continental United States and has been responsible for Ͼ10,000 cases of severe disease and 400 human fatalities, as well as thousands of fatal infections in horses. To develop appropriate surveillance and control strategies, the identiÞcation of which mosquito species are competent vectors and how various factors inßuence their ability to transmit this virus must be determined. Therefore, we evaluated numerous mosquito species for their ability to transmit WNV under laboratory conditions. This report contains data for several mosquito species not reported previously, as well as a summary of transmission data compiled from previously reported studies. Mosquitoes were allowed to feed on chickens infected with WNV isolated from a crow that died during the 1999 outbreak in New York City. These mosquitoes were tested Ϸ2 wk later to determine infection, dissemination, and transmission rates. All Culex species tested were competent vectors in the laboratory and varied from highly efÞcient vectors (e.g., Culex tarsalis Coquillett) to moderately efÞcient ones (e.g., Culex nigripalpus Theobald). Nearly all of the Culex species tested could serve as efÞcient enzootic or amplifying vectors for WNV. Several container-breeding Aedes and Ochlerotatus species were highly efÞcient vectors under laboratory conditions, but because of their feeding preferences, would probably not be involved in the maintenance of WNV in nature. However, they would be potential bridge vectors between the avianÐCulex cycle and mammalian hosts. In contrast, most of the surface pool-breeding Aedes and Ochlerotatus species tested were relatively inefÞcient vectors under laboratory conditions and would probably not play a signiÞcant role in transmitting WNV in nature. In determining the potential for a mosquito species to become involved in transmitting WNV, it is necessary to consider not only its laboratory vector competence but also its abundance, host-feeding preference, involvement with other viruses with similar transmission cycles, and whether WNV has been isolated from this species under natural conditions.
Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.
Knowledge of how mosquitoes respond to insecticides is of paramount importance in understanding how an insecticide functions to prevent disease transmission. A suite of laboratory assays was used to quantitatively characterize mosquito responses to toxic, contact irritant, and non-contact spatial repellent actions of standard insecticides. Highly replicated tests of these compounds over a range of concentrations proved that all were toxic, some were contact irritants, and even fewer were non-contact repellents. Of many chemicals tested, three were selected for testing in experimental huts to confirm that chemical actions documented in laboratory tests are also expressed in the field. The laboratory tests showed the primary action of DDT is repellent, alphacypermethrin is irritant, and dieldrin is only toxic. These tests were followed with hut studies in Thailand against marked-released populations. DDT exhibited a highly protective level of repellency that kept mosquitoes outside of huts. Alphacypermethrin did not keep mosquitoes out, but its strong irritant action caused them to prematurely exit the treated house. Dieldrin was highly toxic but showed no irritant or repellent action. Based on the combination of laboratory and confirmatory field data, we propose a new paradigm for classifying chemicals used for vector control according to how the chemicals actually function to prevent disease transmission inside houses. The new classification scheme will characterize chemicals on the basis of spatial repellent, contact irritant and toxic actions.
Since first discovered in the New York City area in 1999, West Nile virus (WNV) has become established over much of the continental United States and has been responsible for >10,000 cases of severe disease and 400 human fatalities, as well as thousands of fatal infections in horses. To develop appropriate surveillance and control strategies, the identification of which mosquito species are competent vectors and how various factors influence their ability to transmit this virus must be determined. Therefore, we evaluated numerous mosquito species for their ability to transmit WNV under laboratory conditions. This report contains data for several mosquito species not reported previously, as well as a summary of transmission data compiled from previously reported studies. Mosquitoes were allowed to feed on chickens infected with WNV isolated from a crow that died during the 1999 outbreak in New York City. These mosquitoes were tested approximately 2 wk later to determine infection, dissemination, and transmission rates. All Culex species tested were competent vectors in the laboratory and varied from highly efficient vectors (e.g., Culex tarsalis Coquillett) to moderately efficient ones (e.g., Culex nigripalpus Theobald). Nearly all of the Culex species tested could serve as efficient enzootic or amplifying vectors for WNV. Several container-breeding Aedes and Ochlerotatus species were highly efficient vectors under laboratory conditions, but because of their feeding preferences, would probably not be involved in the maintenance of WNV in nature. However, they would be potential bridge vectors between the avian-Culex cycle and mammalian hosts. In contrast, most of the surface pool-breeding Aedes and Ochlerotatus species tested were relatively inefficient vectors under laboratory conditions and would probably not play a significant role in transmitting WNV in nature. In determining the potential for a mosquito species to become involved in transmitting WNV, it is necessary to consider not only its laboratory vector competence but also its abundance, host-feeding preference, involvement with other viruses with similar transmission cycles, and whether WNV has been isolated from this species under natural conditions.
A modular and novel assay system for rapid mass screening of chemical compounds for contact irritant and spatial repellent actions against adult mosquitoes is described. The responses of Aedes aegypti to various concentrations of 3 topical repellents, deet, Bayrepel, and SS220, were evaluated. At treatment concentrations > or = 25 nmol/cm2 of SS220, mosquitoes exhibited significant contact irritant (escape) and spatial repellent (movement away from the chemical source) responses, whereas, a 10-fold increase in the treatment concentration of deet and Bayrepel was required to produce similar responses. The novel bioassay system detected contact irritancy and spatial repellency activity with reproducible results and provided baseline data for determining minimum effective concentrations for other chemicals. The system is compact in size, easy to decontaminate, and requires only a minute quantity of chemical compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.