Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation.Outbreaks of rice blast disease are a serious and recurrent problem in all rice-growing regions of the world, and the disease is extremely difficult to control 1,2 . Rice blast, caused by the fungus Magnaporthe grisea, is therefore a significant economic and humanitarian problem. It is estimated that each year enough rice is destroyed by rice blast disease to feed 60 million people 3 . The life cycle of the rice blast fungus is shown in Fig. 1. Infections occur when fungal spores land and attach themselves to leaves using a special adhesive released from the tip of each spore 4 . The germinating spore develops an appressorium-a specialized infection cell-which generates enormous turgor pressure (up to 8 MPa) that ruptures the leaf cuticle, allowing invasion of the underlying leaf tissue 5,6 . Subsequent colonization of the leaf produces disease lesions from which the fungus sporulates and spreads to new plants. When rice blast infects young rice seedlings, whole plants often die, whereas spread of the disease to the stems, nodes or panicle of older plants results in nearly total loss of the rice grain 2 . Different host-limited forms of M. grisea also infect a broad range of grass species including wheat, barley and millet. Recent reports have shown that the fungus has the capacity to infect plant roots 7 .Here we present our preliminary analysis of the draft genome sequence of M. grisea, which has emerged as a model system for understanding plant-microbe interactions because of both its economic significance and genetic tractability 1,2 . Acquisition of the M. grisea genome sequenceThe genome of a rice pathogenic strain of M. grisea, 70-15, was sequenced through a whole-genome shotgun approach. In all, greater than sevenfold sequence coverage was produced, and a summary of the principal genome sequence data is provided in Table 1 and Supplementary Table S1. The draft genome sequence consists of 2,273 sequence contigs longer than 2 kilobases (kb), ordered and orientated within 159 scaffolds. The total length of all sequence contigs is 38.8 mega...
Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types
BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
The sessile nature of plants forced them to evolve mechanisms to prioritize their responses to simultaneous stresses, including colonization by microbes or nutrient starvation. Here, we compare the genomes of a beneficial root endophyte, Colletotrichum tofieldiae and its pathogenic relative C. incanum, and examine the transcriptomes of both fungi and their plant host Arabidopsis during phosphate starvation. Although the two species diverged only 8.8 million years ago and have similar gene arsenals, we identify genomic signatures indicative of an evolutionary transition from pathogenic to beneficial lifestyles, including a narrowed repertoire of secreted effector proteins, expanded families of chitin-binding and secondary metabolism-related proteins, and limited activation of pathogenicity-related genes in planta. We show that beneficial responses are prioritized in C. tofieldiae-colonized roots under phosphate-deficient conditions, whereas defense responses are activated under phosphate-sufficient conditions. These immune responses are retained in phosphate-starved roots colonized by pathogenic C. incanum, illustrating the ability of plants to maximize survival in response to conflicting stresses.
Hemibiotrophic plant pathogens first establish a biotrophic interaction with the host plant and later switch to a destructive necrotrophic lifestyle. Studies of biotrophic pathogens have shown that they actively suppress plant defenses after an initial microbe-associated molecular pattern-triggered activation. In contrast, studies of the hemibiotrophs suggest that they do not suppress plant defenses during the biotrophic phase, indicating that while there are similarities between the biotrophic phase of hemibiotrophs and biotrophic pathogens, the two lifestyles are not analogous. We performed transcriptomic, histological, and biochemical studies of the early events during the infection of maize (Zea mays) with Colletotrichum graminicola, a model pathosystem for the study of hemibiotrophy. Time-course experiments revealed that mRNAs of several defense-related genes, reactive oxygen species, and antimicrobial compounds all begin to accumulate early in the infection process and continue to accumulate during the biotrophic stage. We also discovered the production of maize-derived vesicular bodies containing hydrogen peroxide targeting the fungal hyphae. We describe the fungal respiratory burst during host infection, paralleled by superoxide ion production in specific fungal cells during the transition from biotrophy to a necrotrophic lifestyle. We also identified several novel putative fungal effectors and studied their expression during anthracnose development in maize. Our results demonstrate a strong induction of defense mechanisms occurring in maize cells during C. graminicola infection, even during the biotrophic development of the pathogen. We hypothesize that the switch to necrotrophic growth enables the fungus to evade the effects of the plant immune system and allows for full fungal pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.