This paper deals with the finite element approximation of the Darcy-Brinkman-Forchheimer equation, involving a porous media with spatially-varying porosity, with mixed boundary condition such as inhomogeneous Dirichlet and traction boundary conditions. We first prove that the considered problem has a unique solution if the source terms are small enough. The convergence of a Taylor-Hood finite element approximation using a finite element interpolation of the porosity is then proved under similar smallness assumptions. Some optimal error estimates are next obtained when assuming the solution to the Darcy-Brinkman-Forchheimer model are smooth enough. We end this paper by providing a fixedpoint method to solve iteratively the discrete non-linear problems and with some numerical experiments to make more precise the smallness assumptions on the source terms and to illustrate the theoretical convergence results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.