Abstract-Facial expression is central to human experience. Its efficient and valid measurement is a challenge that automated facial image analysis seeks to address. Most publically available databases are limited to 2D static images or video of posed facial behavior. Because posed and un-posed (aka "spontaneous") facial expressions differ along several dimensions including complexity and timing, well-annotated video of un-posed facial behavior is needed. Moreover, because the face is a three-dimensional deformable object, 2D video may be insufficient, and therefore 3D video archives are needed. We present a newly developed 3D video database of spontaneous facial expressions in a diverse group of young adults. Well-validated emotion inductions were used to elicit expressions of emotion and paralinguistic communication. Frame-level ground-truth for facial actions was obtained using the Facial Action Coding System. Facial features were tracked in both 2D and 3D domains using both personspecific and generic approaches. The work promotes the exploration of 3D spatiotemporal features in subtle facial expression, better understanding of the relation between pose and motion dynamics in facial action units, and deeper understanding of naturally occurring facial action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.