Posting an audio recording of an oral presentation at a medical meeting on the Internet, with selected slides from the presentation, will not be considered prior publication. This will allow students and physicians who are unable to attend the meeting to hear the presentation and view the slides. If there are any questions about this policy, authors should feel free to call the Journal's Editorial Offices.
Xenotransplantation is one promising approach to bridge the gap between available human cells, tissues, and organs and the needs of patients with diabetes or end-stage organ failure. Based on recent progress using genetically-modified source pigs, improving results with conventional and experimental immunosuppression, and expanded understanding of residual physiologic hurdles, xenotransplantation appears likely to be evaluated in clinical trials in the near future for some select applications. This review offers a comprehensive overview of known mechanisms of xenograft injury, a contemporary assessment of preclinical progress and residual barriers, and our opinions regarding where breakthroughs are likely to occur.
The ability to genetically engineer pigs that no longer express the Galalpha1,3Gal (Gal) oligosaccharide has been a significant step toward the clinical applicability of xenotransplantation. Using a chronic immunosuppressive regimen based on costimulatory blockade, hearts from these pigs have survived from 2 to 6 months in baboons. Graft failure was predominantly from the development of a thrombotic microangiopathy. Potential contributing factors include the presence of preformed anti-nonGal antibodies or the development of low levels of elicited antibodies to nonGal antigens, natural killer (NK) cell or macrophage activity, and inherent coagulation dysregulation between pigs and primates. The breeding of pigs transgenic for an "anticoagulant" gene, such as human tissue factor pathway inhibitor, hirudin, or CD39, or lacking the gene for the prothrombinase, fibrinogen-like protein-2, is anticipated to inhibit the change in the endothelium to a procoagulant state that takes place in the pig organ after transplantation. The identification of the targets for anti-nonGal antibodies and/or human macrophages might allow further genetic modification of the pig, and xenogeneic NK cell recognition and activation may be inhibited by the transgenic expression of human leukocyte antigen molecules and/or by blocking the function of activating NK receptors. The ultimate goal of induction of T-cell tolerance may be possible only if these hurdles in the coagulation system and innate immunity can be overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.