Summary Super-enhancers are tissue specific cis-regulatory elements that drive expression of genes associated with cell identity and malignancy. A cardinal feature of super-enhancers is that they are transcribed to produce long non-coding RNAs (eRNAs). It remains unclear whether epigenetically indistinguishable super-enhancers robustly activate genes in situ and if these functions are attributable to eRNAs or the DNA element. CRISPR/Cas9 was used to systematically delete three discrete super-enhancers at the Nanog locus in embryonic stem cells, revealing functional differences in Nanog transcriptional regulation. One distal super-enhancer 45 kb upstream of Nanog (−45 enhancer) regulates both nearest neighbor genes Nanog and Dppa3. Interestingly, eRNAs produced at the −45 enhancer specifically regulate Dppa3 expression by stabilizing looping of the −45 enhancer and Dppa3. Our work illustrates that genomic editing is required to determine enhancer function and points to a method to selectively target a subset of super-enhancer regulated genes by depleting eRNAs.
Acute myelogenous leukemia (AML) is a high-risk hematopoietic malignancy caused by a variety of mutations, including genes encoding the cohesin complex. Recent studies have demonstrated that reduction in cohesin complex levels leads to enhanced self-renewal in hematopoietic stem and progenitors (HSPCs). We sought to delineate the molecular mechanisms by which cohesin mutations promote enhanced HSPC self-renewal since this represents a critical initial step during leukemic transformation. We verified that RNAi against the cohesin subunit Rad21 causes enhanced self-renewal of HSPCs in vitro through derepression of Polycomb Repressive Complex 2 (PRC2) target genes, including Hoxa7 and Hoxa9. Importantly, knockdown of either Hoxa7 or Hoxa9 suppressed self-renewal, implying both are critical downstream effectors of reduced cohesin levels. We further demonstrate that the cohesin and PRC2 complexes interact and are bound in close proximity to Hoxa7 and Hoxa9. Rad21 depletion resulted in decreased levels of H3K27me3 at the Hoxa7 and Hoxa9 promoters, consistent with Rad21 being critical to proper gene silencing by recruiting the PRC2 complex. Our data demonstrates that the cohesin complex regulates PRC2 targeting to silence Hoxa7 and Hoxa9 and negatively regulate self-renewal. Our studies identify a novel epigenetic mechanism underlying leukemogenesis in AML patients with cohesin mutations.
SUMMARY Although Sin3a is required for survival of early embryos and embryonic stem cells (ESCs), the role of Sin3a in the maintenance and establishment of pluripotency remains unclear. Here we find that the Sin3a/HDAC corepressor complex maintains ESC pluripotency and promotes the generation of induced pluripotent stem cells (iPSCs). Members of the Sin3a/HDAC corepressor complex are enriched in an extended Nanog interactome and function in transcriptional coactivation in ESCs. We also identified a critical role for Sin3a and HDAC2 in efficient reprogramming of somatic cells. Mechanistically, Nanog and Sin3a co-occupy transcriptionally active pluripotency genes in ESCs and also co-localize extensively at their genome-wide targets in pre-iPSCs. Additionally, both factors are required to directly induce a synergistic transcriptional program wherein pluripotency genes are activated and reprogramming barrier genes are repressed. Our findings indicate a transcriptional regulatory role for a major HDAC-containing complex in promoting pluripotency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.