BackgroundMono-unsaturated fatty acids (MUFAs) like oleic acid have been shown to cause apoptosis of cultured endothelial cells by activating protein phosphatase type 2C α and β (PP2C). The question arises whether damage of endothelial or other cells could be observed in intact animals fed with a trioleate-enriched diet.Methodology/Principal FindingsDunkin-Hartley guinea pigs were fed with a trioleate-enriched diet for 5 months. Advanced atherosclerotic changes of the aorta and the coronary arteries could not be seen but the arteries appeared in a pre-atherosclerotic stage of vascular remodelling. However, the weight and size of the hearts were lower than in controls and the number of apoptotic myocytes increased in the hearts of trioleate-fed animals. To confirm the idea that oleic acid may have caused this apoptosis by activation of PP2C, cultured cardiomyocytes from guinea pigs and mice were treated with various lipids. It was demonstrable that oleic acid dose-dependently caused apoptosis of cardiomyocytes from both species, yet, similar to previous experiments with cultured neurons and endothelial cells, stearic acid, elaidic acid and oleic acid methylester did not. The apoptotic effect caused by oleic acid was diminished when PP2C α and β were downregulated by siRNA showing that PP2C was causally involved in apoptosis caused by oleic acid.Conclusions/SignificanceThe glycerol trioleate diet given to guinea pigs for 5 months did not cause marked atherosclerosis but clearly damaged the hearts by activating PP2C α and β. The diet used with 24% (wt/wt) glycerol trioleate is not comparable to human diets. The detrimental role of MUFAs for guinea pig heart tissue in vivo is shown for the first time. Whether it is true for humans remains to be shown.
Certain unsaturated fatty acids (UFAs), cleaved from lipoproteins, are known to activate the serine/threonine protein phosphatase type 2C (PP2C) alpha- and beta-isoforms. To investigate the role of UFAs in apoptosis of endothelial cells, we cocultured human umbilical vein endothelial cells (HUVECs) with THP-1 monocytes. Phorbol-12-myristic-13-acetate (PMA)-treated THP-1 monocytes differentiated into macrophages and synthesized lipoprotein lipase (LPL), the major enzyme for hydrolysis of triglycerides. We demonstrated that LPL from THP-1 macrophages released UFAs from VLDL, which were capable of inducing apoptosis in HUVECs. Physiological concentrations of VLDL did not cause apoptosis in HUVECs, whereas the combination of VLDL with LPL-rich cell medium of THP-1 macrophages did. THP-1 macrophages and HUVECs in cocultivation did not interfere with each other. However, addition of VLDL to this coculture caused apoptosis in HUVECs. Furthermore, inhibition of LPL by adding orlistat to the culture medium and down-regulation of LPL by small interfering RNA (siRNA) reduced the extent of apoptosis of HUVECs. In conclusion, our results show that the amounts of UFAs liberated from lipoproteins are high enough to induce apoptosis in endothelial cells. This underlines the proatherogenic role of UFAs in hyperlipoproteinemias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.