The kinetic performance of graphite particles is difficult to deconvolute from half-cell experiments, where the influences of the working electrode porosity and the counter electrode contribute nonlinearly to the electrochemical response. Therefore, thin-layer electrodes of circa 1 µm thickness were prepared with standard, highly crystalline graphite particles to evaluate their rate capability. The performance was evaluated based on the different stage transitions. We found that the transitions towards the dense stages 1 and 2 with LiC 6 in-plane density are one of the main rate limitations for charge and discharge. But surprisingly, the transitions towards the dilute stages 2L, 3L, 4L, and 1L progress very fast and can even compensate for the initial diffusion limitations of the dense stage transitions during discharge. We show the existence of a substantial difference between the diffusion coefficients of the liquid-like stages and the dense stages. We also demonstrate that graphite can be charged at a rate of ~6C (10 min) and discharged at 600C (6 s) while maintaining 80 % of the total specific charge for particles of 3.3 µm median diameter. Based on these findings, we propose a shrinking annuli mechanism which describes the propagation of the different stages in the particle at medium and high rates.Besides the limited applicable overpotential during charge, this mechanism can explain the long-known but as yet unexplained asymmetry between the charge and discharge rate performance of lithium intercalation in graphite.
The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.
High-capacity anode materials for lithium ion batteries (LIBs), such as spinel-type metal oxides, generally suffer from poor Li(+) and e(-) conductivities. Their drastic crystal structure and volume changes, as a result of the conversion reaction mechanism with Li, severely impede the high-rate and cyclability performance toward their practical application. In this article, we present a general and facile approach to fabricate flexible spinel-type oxide/reduced graphene oxide (rGO) composite aerogels as binder-free anodes where the spinel nanoparticles (NPs) are integrated in an interconnected rGO network. Benefiting from the hierarchical porosity, conductive network and mechanical stability constructed by interpenetrated rGO layers, and from the pillar effect of NPs in between rGO sheets, the hybrid system synergistically enhances the intrinsic properties of each component, yet is robust and flexible. Consequently, the spinel/rGO composite aerogels demonstrate greatly enhanced rate capability and long-term stability without obvious capacity fading for 1000 cycles at high rates of up to 4.5 A g(-1) in the case of CoFe2O4. This electrode design can successfully be applied to several other spinel ferrites such as MnFe2O4, Fe3O4, NiFe2O4 or Co3O4, all of which lead to excellent electrochemical performances.
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.