Primary hepatocytes represent a well-accepted in vitro cell culture system for studies of drug metabolism, enzyme induction, transplantation, viral hepatitis, and hepatocyte regeneration. Recently, a multicentric research program has been initiated to optimize and standardize new in vitro systems with hepatocytes. In this article, we discuss five of these in vitro systems: hepatocytes in suspension, perifusion culture systems, liver slices, co-culture systems of hepatocytes with intestinal bacteria, and 96-well plate bioreactors. From a technical point of view, freshly isolated or cryopreserved hepatocytes in suspension represent a readily available and easy-to-handle in vitro system that can be used to characterize the metabolism of test substances. Hepatocytes in suspension correctly predict interspecies differences in drug metabolism, which is demonstrated with pantoprazole and propafenone. A limitation of the hepatocyte suspensions is the length of the incubation period, which should not exceed 4hr. This incubation period is sufficiently long to determine the metabolic stability and to allow identification of the main metabolites of a test substance, but may be too short to allow generation of some minor, particularly phase II metabolites, that contribute less than 3% to total metabolism. To achieve longer incubation periods, hepatocyte culture systems or bioreactors are used. In this research program, two bioreactor systems have been optimized: the perifusion culture system and 96-well plate bioreactors. The perifusion culture system consists of collagen-coated slides allowing the continuous superfusion of a hepatocyte monolayer with culture medium as well as establishment of a constant atmosphere of 13% oxygen, 82% nitrogen, and 5% CO2. This system is stable for at least 2 weeks and guarantees a remarkable sensitivity to enzyme induction, even if weak inducers are tested. A particular advantage of this systemis that the same bioreactor can be perfused with different concentrations of a test substance in a sequential manner. The 96-well plate bioreactor runs 96 modules in parallel for pharmacokinetic testing under aerobic culture conditions. This system combines the advantages of a three-dimensional culture system in collagen gel, controlled oxygen supply, and constant culture medium conditions, with the possibility of high throughput and automatization. A newly developed co-culture system of hepatocytes with intestinal bacteria offers the possibility to study the metabolic interaction between liver and intestinal microflora. It consists of two chambers separated by a permeable polycarbonate membrane, where hepatocytes are cultured under aerobic and intestinal bacteria in anaerobic conditions. Test substances are added to the aerobic side to allow their initial metabolism by the hepatocytes, followed by the metabolism by intestinal bacteria at the anaerobic side. Precision-cut slices represent an alternative to isolated hepatocytes and have been used fo the investigation of hepatic metabolism, hepatotoxicity...
The use of primary hepatocytes is now well established for both studies of drug metabolism and enzyme induction. Cryopreservation of primary hepatocytes decreases the need for fresh liver tissue. This is especially important for research with human hepatocytes because availability of human liver tissue is limited. In this review, we summarize our research on optimization and validation of cryopreservation techniques. The critical elements for successful cryopreservation of hepatocytes are (1) the freezing protocol, (2) the concentration of the cryoprotectant [10% dimethyl-sulfoxide (DMSO)], (3) slow addition and removal of DMSO, (4) carbogen equilibration during isolation of hepatocytes and before cryopreservation, and (5) removal of unvital hepatocytes by Percoll centrifugation after thawing. Hepatocytes of human, monkey, dog, rat, and mouse isolated and cryopreserved by our standard procedure have a viability > or = 80%. Metabolic capacity of cryopreserved hepatocytes determined by testosterone hydroxylation, 7-ethoxyresorufin-O-de-ethylase (EROD), 7-ethoxycoumarin-O-deethylase (ECOD), glutathione S-transferase, UDP-glucuronosyl transferase, sulfotransferase, and epoxide hydrolase activities is > or = 60% of freshly isolated cells. Cryopreserved hepatocytes in suspension were successfully applied in short-term metabolism studies and as a metabolizing system in mutagenicity investigations. For instance, the complex pattern of benzo[a]pyrene metabolites including phase II metabolites formed by freshly isolated and cryopreserved hepatocytes was almost identical. For the study of enzyme induction, a longer time period and therefore cryopreserved hepatocyte cultures are required. We present a technique with cryopreserved hepatocytes that allows the induction of testosterone metabolism with similar induction factors as for fresh cultures. However, enzyme activities of induced hepatocytes and solvent controls were smaller in the cryopreserved cells. In conclusion, cryopreserved hepatocytes held in suspension can be recommended for short-term metabolism or toxicity studies. Systems with cryopreserved hepatocyte cultures that could be applied for studies of enzyme induction are already in a state allowing practical application, but may be further optimized.
Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions.
Wolinella succinogenes is known to grow at the expense of fumarate respiration with formate or sulfide as electron donor. A W. succinogenes mutant (∆frdCAB) lacking the fumarate reductase operon did not grow with fumarate as terminal electron acceptor and either formate or sulfide as electron donor. The ∆frdCAB mutant grown with formate and nitrate did not contain fumarate reductase activity and did not catalyze electron transport from sulfide to fumarate, in contrast to the nitrate-grown wild-type strain. A mutant constructed by integration of frdCAB into the ∆frdCAB mutant genome showed wild-type properties with respect to growth and enzyme activities. The frdC2 gene located downstream of the fumarate reductase operon frdCAB possibly encodes a diheme cytochrome b that is similar to FrdC (41% identical residues). The corresponding transcript differs from that of frdCAB. A ∆frdC2 mutant showed wild-type properties with respect to growth and enzyme activities. Using site-directed mutagenesis, each of the four histidine residues that are predicted to serve as the axial heme ligands in FrdC (His44, His93, His143, and His182) was replaced by alanine or other residues. The resulting mutants did not grow with formate and fumarate and did not contain fumarate reductase activity, FrdA or FrdC when grown with formate and nitrate. In contrast, substitution of two histidine residues that are not considered heme ligands, yielded mutants (H114A and H120A) that grew with fumarate.It is concluded that FrdCAB is an obligatory component of fumarate respiration with formate and with sulfide in W. succinogenes. FrdC2 is not involved in fumarate respiration. Replacement of the putative heme ligands of FrdC prevents formation of a functional fumarate reductase.
Edited by F. Peter GuengerichPyoverdines are high affinity siderophores produced by a broad range of pseudomonads to enhance growth under iron deficiency. They are especially relevant for pathogenic and mutualistic strains that inhabit iron-limited environments. Pyoverdines are generated from non-ribosomally synthesized highly modified peptides. They all contain an aromatic chromophore that is formed in the periplasm by intramolecular cyclization steps. Although the cytoplasmic peptide synthesis and side-chain modifications are well characterized, the periplasmic maturation steps are far from understood. Out of five periplasmic enzymes, PvdM, PvdN, PvdO, PvdP, and PvdQ, functions have been attributed only to PvdP and PvdQ. The other three enzymes are also regarded as essential for siderophore biosynthesis. The structure of PvdN has been solved recently, but no function could be assigned. Here we present the first in-frame deletion of the PvdN-encoding gene. Unexpectedly, PvdN turned out to be required for a specific modification of pyoverdine, whereas the overall amount of fluorescent pyoverdines was not altered by the mutation. The mutant strain grew normally under iron-limiting conditions. Mass spectrometry identified the PvdN-dependent modification as a transformation of the N-terminal glutamic acid to a succinamide. We postulate a pathway for this transformation catalyzed by the enzyme PvdN, which is most likely functional in the case of all pyoverdines.Under aerobic conditions in the neutral pH range, iron can form insoluble Fe III oxide hydrates, limiting the amount of readily available iron. Therefore, many organisms produce siderophores that bind and thereby solubilize iron in their surroundings. A special group of these siderophores are the pyoverdines, yellow-green pigments that were first described in 1892 by Gessard (1). Turfitt (2, 3) used the production of pyoverdines for taxonomic classification of "fluorescent pseudomonads," which include many important pathogenic as well as beneficial pseudomonads. Today it is known that pyoverdines are non-ribosomally synthesized, highly modified peptides whose biosynthesis and regulation involve more than 20 proteins (4). The cytoplasmic biosynthesis reactions are well established, but recently, the periplasmic maturation has gained interest. Of the five periplasmic enzymes, PvdM, PvdN, PvdO, PvdP, and PvdQ, which are found in all known pyoverdine-producing species, functions have been assigned so far only to PvdQ and PvdP, which are involved in a precursor deacylation step and the chromophore cyclization, respectively (5-8). PvdQ has been identified as a potential novel drug target (5). Based on interposon mutagenesis studies, PvdM, PvdN, and PvdO are all considered to be essential for the formation of functional pyoverdines (6, 9 -11).PvdN is translocated via the Tat 2 system (11). As heterologously produced PvdN contains as prosthetic group a pyridoxal phosphate cofactor (PLP (12)), the Tat system may transport PvdN together with a bound PLP or a derivative...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.