Here, we show that bacteria induce
de novo
synthesis of both major histocompatability complex (MHC) class I and II molecules in a mouse dendritic cell culture system. The neo-biosynthesis of MHC class I molecules is delayed as compared with that of MHC class II. Furthermore, bacteria stabilize MHC class I molecules by a 3-fold increase of their half-life. This has important consequences for the capacity of dendritic cells to present bacterial antigens in the draining lymph nodes. In addition, a model antigen, ovalbumin, expressed on the surface of recombinant
Streptococcus gordonii
is processed and presented on MHC class I molecules. This presentation is 10
6
times more efficient than that of soluble OVA protein. This exogenous pathway of MHC class I presentation is transporter associated with antigen processing (TAP)-dependent, indicating that there is a transport from phagolysosome to cytosol in dendritic cells. Thus, bacteria are shown to be a potentially useful mean for the correct delivery of exogenous antigens to be presented efficiently on MHC class I molecules.
Intracellular parasites are known to persist lifelong in mammalian hosts after the clinical cure of the disease, but the mechanisms of persistence are poorly understood. Here, we show by confocal laser microscopy that in the draining lymph nodes of mice that had healed a cutaneous infection with Leishmania major, 40% of the persisting parasites were associated with fibroblasts forming the reticular meshwork of the lymph nodes. In vitro, both promastigotes and amastigotes of L. major infected primary skin or lymph node fibroblasts. Compared with macrophages, cytokine-activated fibroblasts had a reduced ability to express type 2 nitric oxide synthase and to kill intracellular L. major. These data identify fibroblasts as an important host cell for Leishmania during the chronic phase of infection and suggest that they might serve as safe targets for the parasites in clinically latent disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.