A large number of studies have demonstrated that mechanical perturbation modulates cellular metabolism; however, the systematic characterization of the molecular and cellular transduction mechanisms underlying mechanically induced metabolic modulation has been impeded, in part, by the limitations of the mechanical device. The objective of this investigation was to develop an in vitro experimental system that would provide independent control of the spatial and temporal biaxial strain distribution imposed on a flexible transparent tissue culture membrane that permits attachment, proliferation, and maintenance of the phenotypic expression of cultured embryonic osteoblasts. Such a device would permit a systematic investigation of the cellular response to specific, independently controlled parameters of mechanical deformation. Using a prototype device designed to impose a dynamic sinusoidal spatially isotropic biaxial strain profile, we confirmed experimentally that the strain was biaxially uniform and isotropic (radial = circumferential strain over the entire culture membrane) to within 14% (SD/mean) for the range of the peak strains tested (2.3-9.4%). Additionally, the uniformity was maintained at 1 Hz for at least 5 days of continuous operation. This experimental verification of the theoretically predicted isotropic strain profile suggests that the design principle is sound. Embryonic osteoblasts cultured on the flexible substrate proliferated and exhibited a temporal pattern of phenotypic expression (extracellular matrix accumulation and mineralization) comparable with that observed on polystyrene of tissue culture grade.
Intralacrimal gland injection of BTX-B resulted in persistent corneal fluorescein staining within 3 days, and a significant decrease in aqueous tear production that persisted for 1 month. Intralacrimal gland injection of BTX-B suppressed lacrimation, thereby establishing a dry eye state. This animal model could be a useful tool for investigating the pathogenesis of the chronic condition KCS in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.