Objective An increasing number of studies show the importance of brain-derived neurotrophic factor (BDNF) acting at the feto-placental interface, however, only a few studies describe BDNF levels in amniotic fluid (AF). Methods In this cross-sectional, prospective study, 109 maternal blood-amniotic fluid pairs (including 66 maternal blood-fetal-blood-amniotic fluid trios) were analyzed. BDNF concentrations were measured with a commercially available immunoassay. Results In 71 AF from 109 samples, AF-BDNF concentrations were below the lowest limit of Quantitation (LLoQ) of 1.19 pg/ml (group A), leaving 38 samples with measurable BDNF concentrations (group B). Patients in group A showed significantly higher maternal BMI before pregnancy (mean±SD 26.3± 6.7 (kg/m2) vs. 23.8 ±4.5 (kg/m2) p = 0.04) and lower maternal blood BDNF concentrations than the other group (mean±SD 510.6 ± 554.7 pg/ml vs. mean±SD 910.1± 690.1 pg/ml; p<0.0001). Spearman correlation showed a negative correlation between maternal BMI before pregnancy and maternal BDNF concentrations (r = -0.25, p = 0.01). Conclusion Our study is the first to correlate AF-BDNF samples with the corresponding maternal and fetal blood-BDNF samples. The significant negative correlation between maternal BMI before pregnancy and maternal BDNF and AF-BDNF concentrations below the limit of detection has to be evaluated in further studies.
The Objective of our study was to investigate the influence of dietary (dGDM) and insulin-dependent (iGDM) gestational diabetes (GDM) on BDNF blood levels of corresponding maternal-neonatal pairs and compare them to pregnancies unaffected by GDM. Blood samples from 293 maternal-neonatal pairs were analyzed. Statistical analysis was performed using multiple regression analysis for association of log-transformed maternal and neonatal BDNF levels in relation to GDM, gestational age, neonatal sex, and mode of delivery. This was followed by a 2:1 matching of healthy and diabetic pairs. Maternal and neonatal BDNF levels were lowest in the iGDM group, followed by the dGDM group and healthy controls (maternal: healthy 665 ± 562 (26–2343) pg/mL vs. dGDM 593 ± 446 (25–1522) pg/mL vs. iGDM 541 ± 446 (68–2184) pg/mL; neonate: healthy 541 ± 464 (9.5–2802) pg/mL vs. dGDM 375 ± 342 (1–1491) pg/mL vs. iGDM 330 ± 326 (47–1384) pg/mL). After multiple regression analysis and additional 2:1 matching neonatal log-BDNF was significantly lower (−152.05 pg/mL, p = 0.027) in neonates of mothers with GDM compared to healthy pairs; maternal log-BDNF was also lower (−79.6 pg/mL), but did not reach significance. Our study is the first to analyze BDNF in matched maternal-neonatal pairs of GDM patients compared to a metabolically unaffected control group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.