Ultrashort pulse laser processed sulfur hyperdoped black silicon represents a promising silicon-based material for infrared optoelectronic applications due to its high sub-bandgap optical absorptance. Non-thermal melting and resolidification processes associated with such laser processing, however, result in amorphous and polycrystalline phases which may be detrimental for this purpose. Furthermore, the sulfur impurities are electrically inactive, impeding the formation of a rectifying junction. This work demonstrates an ultrafast laser heating process based on heat accumulation with laser pulses of 10 ps pulse duration at high repetition rates of 41 MHz and peak fluences between 33% and 66% of the ablation threshold as a method to (i) recrystallize the material and (ii) electrically activate the sulfur dopants while (iii) maintaining the sub-bandgap absorption. Furthermore, laser heating recovers the optical activity of sulfur states that have been previously deactivated by thermal annealing. The demonstrated process can have versatile applications in material functionalization due to its highly localized heat input accompanied by high cooling rates.
Crystalline silicon becomes photosensitive and absorbing in the sub-bandgap spectral region if hyperdoped, i.e. supersaturated to a level above the solubility limit in thermal equilibrium, by deep impurities, such as sulfur. Here we apply femtosecond laserpulses to crystalline silicon in a SF6 atmosphere as hyperdoping method. The ultrashort laser pulses cause crystal damage and amorphous phases that would decrease quantum efficiency in a potential optoelectronic device application. We investigate five different post-hyperdoping methods: three etching techniques (ion beam etching IBE, reactive ion etching RIE, and wet-chemical etching HNA) as well as ns-annealing and minute-long thermal annealing and study their impact on crystallinity by Raman spectroscopy and absorptance in the visible and near infrared wavelength regime. We use femtosecond laser hyperdoped silicon (fs-hSi) with two different levels of surface roughness to study a potential dependence on the impact of post-treatments. In our investigation, ns-annealing leads to the best results, characterized by a high Raman crystallinity and a high remaining absorptance in the sub-bandgap spectral region of silicon. Within the used etching methods IBE outperforms the other etching methods above a certain level of fs-hSi surface roughness. We relate this to the specific anisotropic material removal behavior of the IBE technique and back this up with simulations of the effect of the various etching processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.