A global analysis model has been developed for randomly oriented, fully hydrated, inverted hexagonal (HII) phases formed by many amphiphiles in aqueous solution, including membrane lipids. The model is based on a structure factor for hexagonally packed rods and a compositional model for the scattering length density, enabling also the analysis of positionally weakly correlated HII phases. Bayesian probability theory was used for optimization of the adjustable parameters, which allows parameter correlations to be retrieved in much more detail than standard analysis techniques and thereby enables a realistic error analysis. The model was applied to different phosphatidylethanolamines, including previously unreported HII data for diC14:0 and diC16:1 phosphatidylethanolamine. The extracted structural features include intrinsic lipid curvature, hydrocarbon chain length and area per lipid at the position of the neutral plane.
Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pumpprobe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations about the molecular decay dynamics and fragmentation behavior. All results underline the superiority of a consistent probabilistic approach over ad-hoc estimations. The software implementation of the Bayesian formalism presented in this paper is provided at https://github.com/fslab-tugraz/PEPICOBayes/. * m.rumetshofer@tugraz.at † M.R. and P.H. contributed equally to this work. arXiv:1709.04456v3 [physics.atom-ph]
Bayesian parametric analytic continuation (BPAC) is proposed for the analytic continuation of noisy imaginary-time Green's function data as, e.g., obtained by continuous-time quantum Monte Carlo simulations (CTQMC). Within BPAC, the spectral function is inferred from a suitable set of parametrized basis functions. Bayesian model comparison then allows to assess the reliability of different parametrizations. The required evidence integrals of such a model comparison are determined by nested sampling. Compared to the maximum entropy method (MEM), routinely used for the analytic continuation of CTQMC data, the presented approach allows to infer whether the data support specific structures of the spectral function. We demonstrate the capability of BPAC in terms of CTQMC data for an Anderson impurity model (AIM) that shows a generalized Kondo scenario and compare the BPAC reconstruction to the MEM, as well as to the spectral function obtained from the real-time fork tensor product state impurity solver, where no analytic continuation is required. Furthermore, we present a combination of MEM and BPAC and its application to an AIM arising from the ab initio treatment of SrVO3.
We investigate equilibrium and transport properties of a copper phthalocyanine (CuPc) molecule adsorbed on Au(111) and Ag(111) surfaces. The CuPc molecule has essentially three localized orbitals close to the Fermi energy resulting in strong local Coulomb repulsion not accounted for properly in density functional calculations. Hence, they require a proper many-body treatment within, e.g., the Anderson impurity model (AIM). The occupancy of these orbitals varies with the substrate on which CuPc is adsorbed. Starting from density functional theory calculations, we determine the parameters for the AIM embedded in a noninteracting environment that describes the residual orbitals of the entire system. While correlation effects in CuPc on Au(111) are already properly described by a single orbital AIM, for CuPc on Ag(111) the three orbital AIM problem can be simplified into a two orbital problem coupled to the localized spin of the third orbital. This results in a Kondo effect with a mixed character, displaying a symmetry between SU(2) and SU(4). The computed Kondo temperature is in good agreement with experimental values. To solve the impurity problem we use the recently developed fork tensor product state solver. To obtain transport properties, a scanning tunneling microscope (STM) tip is added to the CuPc molecule absorbed on the surface. We find that the transmission depends on the detailed position of the STM tip above the CuPc molecule in good agreement with differential conductance measurements. arXiv:1810.07963v2 [cond-mat.str-el]
A first-principles approach based on density functional theory and non-equilibrium Green's functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including manybody effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.