The cellular substrate for memory is generally attributed to long-lasting changes in synaptic strength. We report here that synaptic or pharmacological activation of the metabotropic glutamate receptor subtype 5 (mGluR5) induces long-term potentiation of intrinsic excitability (LTP-IE) in layer V pyramidal neurons. mGluR5-dependent LTP-IE was associated with a persistent reduction of the afterhyperpolarization (AHP) outward current (IAHP), resulting in the potentiation of EPSP-spike coupling. Apamin occluded induction of LTP-IE, indicating that downregulation of small conductance calcium-dependent potassium (SK) channels mediates this process. In addition to the improved reliability of the input-output function, LTP-IE led to increased temporal precision. The induced reduction of IAHP accelerated the rate of membrane depolarization preceding each action potential and subsequently decreased the jitter of the neuronal discharge. We conclude that mGluR5-dependent LTP-IE not only promotes the spread of excitation in the cortical network but also persistently enhances the temporal fidelity of the neuronal message.
Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current.LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.LGI1 | Kv1 channels | D-type current | intrinsic excitability | epilepsy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.