The mechanisms of plant litter decay in drylands are poorly understood, limiting the accuracy of nutrient-cycling models for these systems. We monitored the decay of 12 leaf litter types on the soil surface of the Sonoran Desert for 34 months and assessed what traits predicted mass loss and how exposure to different wavebands of sunlight influenced mass loss. Mass loss varied considerably among litter types, ranging from 42%-96% after 34 months in full sunlight. Traditional indices of litter quality (e.g., initial C:N or lignin:N ratios) failed to predict differences in mass loss among litter types. The strongest predictor of mass loss was the microbial respiration rate of initial litter, which explained 45%-54% of the variation in loss among litter types. Microbial respiration rates were not correlated with traditional indices of litter quality, but were positively correlated with the water-soluble fraction in litter and concentrations of dissolved organic C in this fraction. Traditional indices of litter quality failed to predict decay likely because they did a poor job of predicting microbial degradability of litter, not because microbial degradation was a minor driver of decay. In all radiation-exposure treatments, water-soluble fractions and respiration rates increased through decay and were several times higher after 34 months than initially. Hence, labile pools and microbial degradability of litter increased through decay in contrast to traditional views that labile pools decline and constrain microbes. Litter exposed to UV or UV through blue radiation wavelengths, lost on average 1.3 times or 1.5 times more mass, respectively, than litter not exposed to these wavebands. The magnitude of this photodegradation was greater in litter types that had higher initial concentrations of hemicellulose and cellulose per unit surface area. Litter exposed to full sun had higher water-soluble fractions and usually had higher respiration rates, illustrating that sunlight accelerated microbial degradation by increasing labile pools. The processes driving litter decay appeared to differ appreciably from mesic systems and involved strong couplings between abiotic and biotic drivers.
Photodegradation has been recognized as a significant driver of plant litter decomposition in drylands. Another potential driver is the thermal emission of trace gases that occurs in the absence of solar radiation and microbial activity. Most field assessments documenting photodegradation have employed filters that absorb solar radiation, along with transparent filter controls; faster litter decay under transparent filters is taken as evidence of photodegradation. However, the temperature of litter under transparent filters is often higher, and its faster decay might conceivably stem from greater thermal emission, rather than photodegradation. If true, the growing consensus that photodegradation is a significant driver of litter decay needs rethinking. We assessed the contribution of thermal emission of CO2 and CH4 to the C loss of 12 litter types over a 34‐month photodegradation study in the Sonoran Desert by quantifying thermal emission responses and using field litter temperatures to estimate emissions. Emission of both gases from litter increased exponentially with temperature. Emission of CO2 was much greater than CH4, but their rates were strongly correlated. Concentrations of surface waxes and dissolved organic C in litter were strong predictors of emission of both gases. Emission declined from dried green leaves to naturally senesced litter, and as litter decayed. Diurnal litter temperature averaged 39.8°C under transparent filters over the field experiment and averaged 1.7°C higher than that of litter under filters that absorbed UV through blue solar wavelengths. Through all mechanisms, litter lost an average of 77.8% of its original C under transparent filters and 60.8% under filters that absorbed UV through blue wavelengths. However, thermal emission of these gases accounted for only 0.8% of the original C in litter under transparent filters and 1.0% under filters that absorbed UV through blue wavelengths, corresponding to only 1.2% and 2.0% of the total C lost from litter. While litter temperatures were higher under transparent filters, thermal emission losses from this litter were lower because emission from this litter declined faster with decay. We conclude that thermal abiotic emission was a minor C loss pathway and that photodegradation was responsible for the faster decay of litter in sunlight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.