Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) I, the slow delayed rectifier current; 2) I, the rapid delayed rectifier current; and 3) I, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Background: In pulmonary arterial hypertension (PAH), pathological changes in pulmonary arterioles progressively raise pulmonary artery pressure and increase pulmonary vascular resistance, leading to right heart failure and high mortality rates. Recently, the first potassium channelopathy in PAH, due to mutations in KCNK3, was identified as a genetic cause and pharmacological target. Methods: Exome sequencing was performed to identify novel genes in a cohort of 99 pediatric and 134 adult onset group I pulmonary arterial hypertension patients. Novel rare variants in the gene identified were independently identified in a cohort of 680 adult onset patients. Variants were expressed in COS cells and function assessed by patch-clamp and rubidium flux analysis. Results: We identified a de novo novel heterozygous predicted deleterious missense variant c.G2873A (p.R958H) in ABCC8 (ATP-binding cassette, subfamily C, member 8) in a child with idiopathic PAH. We then evaluated all individuals in the original and a second cohort for rare or novel variants in ABCC8 and identified 11 additional heterozygous predicted damaging ABCC8 variants. ABCC8 encodes sulfonylurea receptor 1 (SUR1), a regulatory subunit of the ATP-sensitive potassium channel (KATP). We observed loss of KATP function for all ABCC8 variants evaluated, and pharmacological rescue of all channel currents in vitro by the SUR1 activator, diazoxide. Conclusions: Novel and rare missense variants in ABCC8 are associated with pulmonary arterial hypertension. Identified ABCC8 mutations decreased KATP channel function, which was pharmacologically recovered.
The IKs potassium channel, critical to control of heart electrical activity, requires assembly of α (KCNQ1) and β (KCNE1) subunits. Inherited mutations in either IKs channel subunit are associated with cardiac arrhythmia syndromes. Two mutations (S140G and V141M) that cause familial atrial fibrillation (AF) are located on adjacent residues in the first membrane-spanning domain of KCNQ1, S1. These mutations impair the deactivation process, causing channels to appear constitutively open. Previous studies suggest that both mutant phenotypes require the presence of KCNE1. Here we found that despite the proximity of these two mutations in the primary protein structure, they display different functional dependence in the presence of KCNE1. In the absence of KCNE1, the S140G mutation, but not V141M, confers a pronounced slowing of channel deactivation and a hyperpolarizing shift in voltage-dependent activation. When coexpressed with KCNE1, both mutants deactivate significantly slower than wild-type KCNQ1/KCNE1 channels. The differential dependence on KCNE1 can be correlated with the physical proximity between these positions and KCNE1 as shown by disulfide cross-linking studies: V141C forms disulfide bonds with cysteine-substituted KCNE1 residues, whereas S140C does not. These results further our understanding of the structural relationship between KCNE1 and KCNQ1 subunits in the IKs channel, and provide mechanisms for understanding the effects on channel deactivation underlying these two atrial fibrillation mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.