A central feature of human brain activity is the alpha rhythm: a 7-13 Hz oscillation observed most notably over occipitoparietal brain regions during periods of eyes-closed rest. Alpha oscillations covary with changes in visual processing and have been associated with a broad range of neurocognitive functions. In this article, we review these associations and suggest that alpha oscillations can be thought to exhibit at least five distinct 'characters': those of the inhibitor, perceiver, predictor, communicator and stabiliser. In short, while alpha oscillations are strongly associated with reductions in visual attention, they also appear to play important roles in regulating the timing and temporal resolution of perception. Furthermore, alpha oscillations are strongly associated with top-down control and may facilitate transmission of predictions to visual cortex. This is in addition to promoting communication between frontal and posterior brain regions more generally, as well as maintaining ongoing perceptual states. We discuss why alpha oscillations might associate with such a broad range of cognitive functions and suggest ways in which these diverse associations can be studied experimentally.
Neural oscillations in the alpha band (7–13 Hz) are commonly associated with disengagement of visual attention. However, recent studies have also associated alpha with processes of attentional control and stability. We addressed this issue in previous experiments by delivering transcranial alternating current stimulation at 10 Hz over posterior cortex during visual tasks (alpha tACS). As this stimulation can induce reliable increases in EEG alpha power, and given that performance on each of our visual tasks was negatively associated with alpha power, we assumed that alpha tACS would reliably impair visual performance. However, alpha tACS was instead found to prevent both deteriorations and improvements in visual performance that otherwise occurred during sham & 50 Hz tACS. Alpha tACS therefore appeared to exert a stabilizing effect on visual attention. This hypothesis was tested in the current, pre-registered experiment by delivering alpha tACS during a task that required rapid switching of attention between motion, color, and auditory subtasks. We assumed that, if alpha tACS stabilizes visual attention, this stimulation should make it harder for people to switch between visual tasks, but should have little influence on transitions between auditory and visual subtasks. However, in contrast to this prediction, we observed no evidence of impairments in visuovisual vs. audiovisual switching during alpha vs. control tACS. Instead, we observed a trend-level reduction in visuoauditory switching accuracy during alpha tACS. Post-hoc analyses showed no effects of alpha tACS in response time variability, diffusion model parameters, or on performance of repeat trials. EEG analyses also showed no effects of alpha tACS on endogenous or stimulus-evoked alpha power. We discuss possible explanations for these results, as well as their broader implications for current efforts to study the roles of neural oscillations in cognition using tACS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.