Trash deposits in aquatic environments have a destructive effect on marine ecosystems and pose a long-term economic and environmental threat. Autonomous underwater vehicles (AUVs) could very well contribute to the solution of this problem by finding and eventually removing trash. This paper evaluates a number of deep-learning algorithms preforming the task of visually detecting trash in realistic underwater environments, with the eventual goal of exploration, mapping, and extraction of such debris by using AUVs. A large and publicly-available dataset of actual debris in open-water locations is annotated for training a number of convolutional neural network architectures for object detection. The trained networks are then evaluated on a set of images from other portions of that dataset, providing insight into approaches for developing the detection capabilities of an AUV for underwater trash removal. In addition, the evaluation is performed on three different platforms of varying processing power, which serves to assess these algorithms' fitness for real-time applications.
This paper explores the design and development of a class of robust diver-following algorithms for autonomous underwater robots. By considering the operational challenges for underwater visual tracking in diverse real-world settings, we formulate a set of desired features of a generic diver following algorithm. We attempt to accommodate these features and maximize general tracking performance by exploiting the state-of-the-art deep object detection models. We fine-tune the building blocks of these models with a goal of balancing the trade-off between robustness and efficiency in an on-board setting under real-time constraints. Subsequently, we design an architecturally simple Convolutional Neural Network (CNN)-based diver-detection model that is much faster than the state-of-the-art deep models yet provides comparable detection performances. In addition, we validate the performance and effectiveness of the proposed diver-following modules through a number of field experiments in closed-water and open-water environments.
In this paper, we propose a novel method for underwater robot-to-human communication using the motion of the robot as "body language". To evaluate this system, we develop simulated examples of the system's body language gestures, called kinemes, and compare them to a baseline system using flashing colored lights through a user study. Our work shows evidence that motion can be used as a successful communication vector which is accurate, easy to learn, and quick enough to be used, all without requiring any additional hardware to be added to our platform. We thus contribute to "closing the loop" for human-robot interaction underwater by proposing and testing this system, suggesting a library of possible body language gestures for underwater robots, and offering insight on the design of nonverbal robot-to-human communication methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.