Depression has been linked to increased cortisol reactivity and differences in limbic brain volumes, yet the mechanisms underlying these alterations are unclear. One main hypothesis is that stress causes these effects. This is supported by animal studies showing that chronic stress or glucocorticoid administration can lead to alterations in hippocampal and amygdala structures. Relatedly, life stress is cited as one of the major risk factors for depression and candidate gene studies have related variation in stress-system genes to increased prevalence and severity of depression. The present study tested the hypothesis that genetic profile scores combining variance across 10 single nucleotide polymorphisms from four stress-system genes (CRHR1, NR3C2, NR3C1, and FKBP5) and early life stress would predict increases in cortisol levels during laboratory stressors in 120 preschool-age children (3-5 years old), as well as hippocampal and amygdala volumes assessed with MRI in these same children at school age (7-12 years old). We found that stress-system genetic profile scores positively predicted cortisol levels while the number of stressful/traumatic life events experienced by 3-5 years old negatively predicted cortisol levels. The interaction of genetic profile scores and early life stress predicted left hippocampal and left amygdala volumes. Cortisol partially mediated the effects of genetic variation and life stress on limbic brain volumes, particularly on left amygdala volume. These results suggest that stress-related genetic and early environmental factors contribute to variation in stress cortisol reactivity and limbic brain volumes in children, phenotypes associated with depression in adulthood.
Recent technological and analytical progress in brain imaging has enabled the examination of brain organization and connectivity at unprecedented levels of detail. The Human Connectome Project in Development (HCP-D) is exploiting these tools to chart developmental changes in brain connectivity. When complete, the HCP-D will comprise approximately ∼1750 open access datasets from 1300 + healthy human participants, ages 5-21 years, acquired at four sites across the USA. The participants are from diverse geographical, ethnic, and socioeconomic backgrounds. While most participants are tested once, others take part in a three-wave longitudinal component focused on the pubertal period (ages 9-17 years). Brain imaging sessions are acquired on a 3 T Siemens Prisma platform and include structural, functional (resting state and task-based), diffusion, and perfusion imaging, physiological monitoring, and a battery of cognitive tasks and self-reports. For minors, parents additionally complete a battery of instruments to characterize cognitive and emotional development, and environmental variables relevant to development. Participants provide biological samples of blood, saliva, and hair, enabling assays of pubertal hormones, health markers, and banked DNA samples. This paper outlines the overarching aims of the project, the approach taken to acquire maximally informative data while minimizing participant burden, preliminary analyses, and discussion of the intended uses and limitations of the dataset.
Early maternal support has been shown to promote specific gene expression, neurogenesis, adaptive stress responses, and larger hippocampal volumes in developing animals. In humans, a relationship between psychosocial factors in early childhood and later amygdala volumes based on prospective data has been demonstrated, providing a key link between early experience and brain development. Although much retrospective data suggests a link between early psychosocial factors and hippocampal volumes in humans, to date there has been no prospective data to inform this potentially important public health issue. In a longitudinal study of depressed and healthy preschool children who underwent neuroimaging at school age, we investigated whether early maternal support predicted later hippocampal volumes. Maternal support observed in early childhood was strongly predictive of hippocampal volume measured at school age. The positive effect of maternal support on hippocampal volumes was greater in nondepressed children. These findings provide prospective evidence in humans of the positive effect of early supportive parenting on healthy hippocampal development, a brain region key to memory and stress modulation.depression | parental support | nurturance | neurodevelopment
Background Preschool-onset depression, a developmentally adapted form of depression arising between the ages of 3–6, has demonstrated numerous features of validity including characteristic alterations in stress reactivity and brain function. Notably, this validated syndrome with multiple clinical markers is characterized by sub-threshold DSM Major Depressive Disorder criteria, raising questions about its clinical significance. To clarify the utility and public health significance of the preschool-onset depression construct, diagnostic outcomes of this group at school age and adolescence were investigated. Methods We investigated the likelihood of meeting full DSM Major Depressive Disorder criteria in later childhood (i.e., ≥ age 6) as a function of preschool depression, other preschool Axis I disorders, maternal depression, parenting non-support and traumatic life events in a longitudinal prospective study of preschool children. Results Preschool-onset depression emerged as a robust predictor of DSM-5 Major Depressive Disorder in later childhood even after accounting for the effect of maternal depression and other risk factors. Preschool-onset conduct disorder also predicted DSM-5 Major Depressive Disorder in later childhood, but this association was partially mediated by maternal non-support, reducing the effect of preschool conduct disorder in predicting DSM depression by 21%. Discussion Study findings provide evidence that this preschool depressive syndrome is a robust risk factor for meeting full DSM criteria for Major Depressive Disorder in later childhood over and above other established risk factors. Preschool conduct disorder also predicted Major Depressive Disorder but was mediated by maternal non-support. Findings suggest that attention to preschool depression and conduct disorder in addition to maternal depression and exposure to trauma should now become an important factor for identification of young children at highest risk for later MDD who should be targeted for early interventions.
Objective Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early childhood onset MDD. Method Fifty-one children ages 7–11 years, prospectively studied since preschool age, completed resting state fMRI and were assigned to four groups: 1) C-MDD (N=13) personal history of early childhood onset MDD; 2) M-MDD (N=11) a maternal history of affective disorders; 3) CM-MDD (N=13) both maternal and early childhood onset MDD or 4) CON (N=14) without either a personal or maternal history. We used seed-based resting state functional connectivity (rsfcMRI) analysis in an independent sample of adults to identify networks showing both positive (e.g., limbic regions) and negative (e.g., dorsal frontal/parietal regions) connectivity with the amygdala. These regions were then used in ROI based analyses of our child sample. Results We found a significant interaction between maternal affective disorder history and the child's MDD history for both positive and negative rsfcMRI networks. Specifically, when copared to CON, we found reduced connectivity between the amygdala and the “Negative Network” in children with C-MDD, M-MDD and CM-MDD. Children with either C-MDD or a maternal history of MDD (but not CM-MDD) displayed reduced connectivity between the amygdala and the “Positive Network”. Conclusions Our finding of an attenuated relationship between the amygdala, a region affected in MDD and involved in emotion processing, and cognitive control regions is consistent with a hypothesis of altered regulation of emotional processing in C-MDD suggesting developmental continuity of this alteration into early childhood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.