Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever‐increasing extents because of the appreciation for the role of landscape‐scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large‐scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage‐grouse (Centrocercus urophasianus, hereafter sage‐grouse) occur in western semi‐arid landscapes in North America. Range‐wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage‐grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high‐quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage‐grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage‐grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred areas with higher precipitation in the summer and avoided rugged terrain in the winter. Selection for sagebrush cover varied regionally with stronger selection in the Northeast region, likely because of limited availability, whereas avoidance of paved roads was fairly consistent across regions. We chose resource selection function (RSF) thresholds for each model set (seasonal × regional combination) that delineated important seasonal habitats for sage‐grouse. Each model set showed good validation and discriminatory capabilities within study‐site boundaries. We applied the nesting‐season models to a novel area not included in model development. The percentage of independent nest locations that fell directly within identified important habitat was not overly impressive in the novel area (49%); however, including a 500‐m buffer around important habitat captured 98% of independent nest locations within the novel area. We also used leks and associated peak male counts as a proxy for nesting habitat outside of the study sites used to develop the models. A 1.5...
Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE ¼ 0.3 km; n ¼ 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE ¼ 0.5 km; n ¼ 607 individuals). Average nest-to-winter movements were 14.4 km (SE ¼ 0.6 km; n ¼ 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was developed based on lek data, was generally better at capturing the nesting locations than summer or winter locations. However, across
The sagebrush (Artemisia spp.) ecosystem is one of the largest ecosystems in western North America providing habitat for species found nowhere else. Sagebrush habitats have experienced dramatic declines since the 1950s, mostly due to anthropogenic disturbances. The greater sage‐grouse (Centrocercus urophasianus) is a sagebrush‐obligate species that has experienced population declines over the last several decades, which are attributed to a variety of disturbances including the more recent threat of oil and gas development. We developed a hierarchical, Bayesian state‐space model to investigate the impacts of 2 measures of oil and gas development, and environmental and habitat conditions, on sage‐grouse populations in Wyoming, USA using male lek counts from 1984 to 2008. Lek attendance of male sage‐grouse declined by approximately 2.5%/year and was negatively related to oil and gas well density. We found little support for the influence of sagebrush cover and precipitation on changes in lek counts. Our results support those of other studies reporting negative impacts of oil and gas development on sage‐grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage‐grouse, development may also negatively affect other sagebrush‐obligate species, and active management of sagebrush habitats may be necessary to maintain some species. © 2016 The Wildlife Society.
for providing thoughtful edits on various sections; E. Tyrrell (U.S. Geological Survey) for helping to compile data and build tables; J. Atkinson (U.S. Geological Survey) for assisting with report preparation; and D. Nahhas and K. Engelking (U.S. Geological Survey) for editing, formating, and final production of this report. We extend gratitude for the cooperation of personnel from 11 western state wildlife agencies, who provided feedback at various stages on uses of lek data, modeling methods, and constructive reviews at various stages of production. Specifically, we value the contributions from T. Remington
a b s t r a c tSagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km 2 (1.1%) across the study area under the A1B scenario and 41.15 km 2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km 2 (4.1%) under A1B and 50.8 km 2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km 2 (3.8%) under A1B and 40.59 km 2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus urophasianus) habitat models to evaluate the effects of potential climate-induced habitat change. Under the 2050 IPCC A1B scenario, 11.6% of currently identified nesting habitat was lost, and 0.002% of new potential habitat was gained, with 4% of summer habitat lost and 0.039% gained. Our results demonstrate the successful ability of remote sensing based sagebrush components, when coupled with precipitation, to forecast future component response using IPCC precipitation scenarios. Our approach also enables future quantification of greater sage-grouse habitat under different precipitation scenarios, and provides additional capability to identify regional precipitation influence on sagebrush component response.Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.