This study reports on time-of-flight (TOF) hole mobility measurements in aged 2,3,6,7,10,11-Hexakis(pentyloxy)triphenylene columnar liquid crystals. In contrast to the original samples reported in 2006, homeotropically aligned samples yielded TOF transients with an extended non-exponential rise. The experimental data were fit to a simple model that accurately reproduces the TOF transients assuming delayed charge release from traps near the optically excited electrode. While interfacial trapping appears only in the aged materials, the bulk mobility is similar to the pristine material. The model addresses dispersive transport in quasi-one-dimensional materials, determines the charge carrier mobility in systems with interfacial traps, and provides a method for characterizing the traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.