Abstract:The neuropathology of Parkinson's disease is reflected in experimental animals treated with the selective nigrostriatal dopaminergic neurotoxin MPTP. Neurons exposed to MPTP (MPP ϩ ) express morphological features of apoptosis, although the intracellular pathways that produce this morphology have not been established. The c-Jun NH 2 -terminal kinase (JNK) signaling cascade has been implicated as a mediator of MPTP-induced apoptotic neuronal death based on the ability of CEP-1347/KT-7515, an inhibitor of JNK activation, to attenuate MPTP-induced nigrostriatal dopaminergic degeneration. In these studies, MPTPmediated activation of the JNK signaling pathway was assessed in the nigrostriatal system of MPTP-treated mice. MPTP elevated levels of phosphorylated JNK and JNK kinase (MKK4; also known as SEK1 or JNKK), by 2.5-and fivefold, respectively. Peak elevations occurred soon after administration of MPTP and coincided with peak CNS levels of MPP ϩ . Increased MKK4 phosphorylation, but not JNK phosphorylation, was found in the striatum, suggesting that activation of MKK4 occurs in injured dopaminergic terminals. Both JNK and MKK4 phosphorylations were attenuated by pretreatment with l-deprenyl, indicating that these phosphorylation events were mediated by MPP ϩ . Moreover, CEP-1347/KT-7515 inhibited MPTP-mediated MKK4 and JNK signaling at a dose that attenuates MPTPinduced dopaminergic loss. These data implicate this signaling pathway in MPTP-mediated nigrostriatal dopaminergic death and suggest that it may be activated in the degenerative process in Parkinson's disease. Key Words: MPTP-MPP ϩ -c-Jun NH 2 -terminal kinase-c-Jun NH 2 -terminal kinase kinase-Phosphorylated c-Jun NH 2 -terminal kinase-Phosphorylated c-Jun NH 2 -terminal kinase kinase-Parkinson's disease-Apoptosis.
The serine hydrolase α/β-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence, and severity. This effect is retained in cnr1−/− or cnr2−/− mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors. ABHD6 inhibition also blocked spontaneous seizures in R6/2 mice, a genetic model of Juvenile Huntington’s disease known to exhibit dysregulated eCB signaling. ABHD6 blockade retained its antiepileptic activity over chronic dosing and was not associated with psychomotor or cognitive effects. While the etiology of seizures in R6/2 mice remains unsolved, involvement of the hippocampus is suggested by interictal epileptic discharges, increased expression of vGLUT1 but not vGAT, and reduced Neuropeptide Y (NPY) expression. We conclude that ABHD6 inhibition may represent a novel antiepileptic strategy.
Ganaxolone (GNX) is the 3b-methylated synthetic analog of the naturally occurring neurosteroid, allopregnanolone (ALLO). GNX is effective in a broad range of epilepsy and behavioral animal models and is currently in clinical trials designed to assess its anticonvulsant and antidepressant activities. The current studies were designed to broaden the anticonvulsant profile of GNX by evaluating its potential anticonvulsant activities following i.v. administration in treatment-resistant models of status epilepticus (SE), to establish a pharmacokinetic (PK)/pharmacodynamic (PD) relationship, and to compare its PK and anticonvulsant activities to ALLO. In PK studies, GNX had higher exposure levels, a longer halflife, slower clearance, and higher brain penetrance than ALLO. Both GNX and ALLO produced a sedating response as characterized by loss of righting reflex, but neither compound produced a full anesthetic response as animals still responded to painful stimuli. Consistent with their respective PK properties, the sedative effect of GNX was longer than that of ALLO. Unlike other nonanesthetizing anticonvulsant agents indicated for SE, both GNX and ALLO produced anticonvulsant activity in models of pharmacoresistant SE with administration delay times of up to 1 hour after seizure onset. Again, consistent with their respective PK properties, GNX produced a significantly longer anticonvulsant response. These studies show that GNX exhibited improved pharmacological characteristics versus other agents used as treatments for SE and position GNX as a uniquely acting treatment of this indication. These studies were supported by Marinus Pharmaceuticals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.