Alternative manufacturing processes such as hot working and electrical-assisted forming (EAF), which involves passing a high density electrical current through the workpiece during deformation, have been shown to increase the potential strain induced in materials and reduce required forces for deformation. While forming at elevated temperatures is common, the EAF process provides more significant improvements in formability without the undesirable effects associated with forming at elevated temperatures. This research investigates the effect of grain size and current density on annealed pure copper during the EAF process. The flow stress reduction effect of the process was shown to decrease with increasing grain sizes. A threshold current density, required to achieve a significant reduction in the flow stresses, becomes more apparent at larger grain sizes, and the value increases with increasing grain size. The effects increase with increasing strain due to dislocations being generated during deformation. Therefore, the dislocation density, related in part by the grain size, appears to be a factor in the EAF process.
Alternative manufacturing processes such as hot working and Electrical-Assisted Forming (EAF), which involves passing a high density electrical current through the workpiece during deformation, have been shown to increase the potential strain induced in materials and reduce required forces for deformation. While forming at elevated temperatures is common, the EAF process provides more significant improvements in formability without the undesirable affects associated with forming at elevated temperatures. This research investigates the effect of grain size and current density on annealed pure copper during the EAF process. The flow stress reduction effect of the process was shown to decrease with increasing grain sizes. A threshold current density, required to achieve a significant reduction in the flow stresses, becomes more apparent at larger grain sizes and the value increases with increasing grain size. The effects increase with increasing strain due to dislocations being generated during deformation. Therefore the dislocation density, related in part by the grain size, appears to be a factor in the EAF process.
electrical-assisted forming (EAF), current is passed through the material during the deformation process, which results in a decrease in the required flow stress for the material. While resistive heating occurs, the flow stress reductions are beyond what can be explained by temperature effects alone. Hypotheses for this effect relate to the current affecting dislocation generation and aiding dislocation motion through the lattice structure. If the latter was the case, then materials with higher dislocation densities from severe deformation should have more pronounced benefits from EAF. In this research. Equal channel angular extrusion (ECAE) was u.sed to induce severe plastic deformation into the material. Subsequent EAE compression e.xperiments with the ECAE specimens and as-received material with comparable grain sizes were conducted. As e.xpected, the EAE process teduced the flow .sttess value .substantially more, e.g., 224 MPa versus 115 MPa at a strain of 0.8 for the ECAE specimens compared to the as-received specimens, respectively. These flow stress reductions were fiom a case with no current applied to a case where an initial current density of 250 A/mm^ was applied. EAF may particularly be beneficial at the microscale to address .size effects as the current required to achieve an elevated current density is more viable.
In Electrical-Assisted Forming (EAF), current is passed through the material during the deformation process, which results in a decrease in the required flow stress for the material. While resistive heating occurs, the flow stress reductions are beyond what can be explained by temperature effects alone. Hypotheses for this effect relate to the current affecting dislocation generation and aiding dislocation motion through the lattice structure. If the latter was the case, then materials with higher dislocation densities from severe deformation should have more pronounced benefits from EAF. In this research, Equal Channel Angular Extrusion (ECAE) was used to induce severe plastic deformation into the material. Subsequent EAF compression experiments with the ECAE specimens and as-received material with comparable grain sizes were conducted. As expected, the EAF process reduced the flow stress value substantially more, e.g., 224MPa versus 115MPa at a strain of 0.8 for the ECAE specimens compared to the as-received specimens respectively. These flow stress reductions were from a case with no current applied to a case where an initial current density of 250A/mm2 was applied. EAF may particularly be beneficial at the microscale to address size effects as the current required to achieve an elevated current density is more viable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.