We propose a procedure to undertake Bayesian variable selection and model averaging for a series of regressions located on a lattice. For those regressors that are in common in the regressions, we consider using an Ising prior to smooth spatially the indicator variables representing whether or not the variable is zero or nonzero in each regression. This smooths spatially the probabilities that each independent variable is nonzero in each regression and indirectly smooths spatially the regression coefficients. We discuss how single-site sampling schemes can be used to evaluate the joint posterior distribution. The approach is applied to the problem of functional magnetic resonance imaging in medical statistics, where massive datasets arise that require prompt processing. Here the Ising prior with a three-dimensional neighborhood structure is used to smooth spatially activation maps from regression models of blood oxygenation. The Ising prior also has the advantage of allowing incorporation of anatomic prior information through the external field. Using a visual experiment, we show how a single-site sampling scheme can provide rapid evaluation of the posterior activation maps and activation amplitudes. The approach is shown to result in maps that are superior to those produced by a recent Bayesian approach using a continuous Markov random field for the activation amplitude.KEY WORDS: Binary Markov random field; Human brain mapping; Ising prior; Markov chain Monte Carlo; Model averaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.