Current interpretation of the Messinian Salinity Crisis (MSC) involves partial bdesiccationQ of the Mediterranean Sea coupled with the deposition of thick evaporites in the deep basins. New sets of seismic reflection profiles in the western part of the Gulf of Lions confirm the basinward extension of the Messinian erosion and enable the mapping of distinctive seismic markers indicating the Messinian Erosional Surface (or Messinian unconformity), the basin-margin detrital deposits, and the deep evaporite sequence. The geometrical relationship between these three elements and their relationship to the paleogeography of the margin during the MSC provide new information about the evolution of the study area during the Messinian.The Messinian Erosional Surface (MES), commonly correlated with the bdesiccationQ phase and the deposition of deep evaporites during the apogee of the event, is generally interpreted as a subaerial feature. In the Gulf of Lions, it is a complex diachronic polygenic erosional surface observed at the base of the prograding Plio-Quaternary sequence beneath the shelf and slope; it extends downslope beneath the deep basin Upper Evaporites and the Salt, and possibly correlates conformably with the base of the so-called deep Lower Evaporites. The whole morphology of the MES reflects a buried drainage pattern, supporting the interpretation of fluvial erosion driven by a substantial drop in sea level. Our results also suggest that large submarine gravity flows occurred prior to any significant accumulation of Salt in the basin and prior to the Upper Evaporites. Consequently, interbedded clastic deposits may partly account for the parallel reflectors of the Lower Evaporites. Since river erosion persisted throughout the MSC, the Salt and Upper Evaporite units may also contain a large amount of detrital sediments.
0025-3227/$ -see front matter DThe good quality of the new seismic data clearly reveals fan-shaped Messinian deposits in the downstream part of the main Messinian valleys (i.e., the Nile, Var, and Spanish rivers). The depositional scenarios generally involve a substantial sea-level fall coupled with deltaic/prodeltaic accumulations. A chaotic seismic unit (Unit D) filling Messinian lows and extending beneath the Salt within the study area is interpreted as a Messinian clastic unit. We propose a polyphase scenario of detrital fan deposition involving pre-, syn-, and post-Salt deposition in subaqueous/subaerial environments.In the Gulf of Lions, a late Miocene tectonic phase that affected the western shelf also played an important role in controlling (a) the pattern of the Messinian fluvial network, (b) the location of maximum erosion on the shelf, and (c) the location of the detrital fan depocentre downslope. D
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.