SummaryFollowing cessation of growth, yeast cells remain viable in a nondividing state for a period of time known as the chronological lifespan (CLS). Autophagy is a degradative process responsible for amino acid recycling in response to nitrogen starvation and amino acid limitation. We have investigated the role of autophagy during chronological aging of yeast grown in glucose minimal media containing different supplemental essential and nonessential amino acids. Deletion of ATG1 or ATG7, both of which are required for autophagy, reduced CLS, whereas deletion of ATG11, which is required for selective targeting of cellular components to the vacuole for degradation, did not reduce CLS. The nonessential amino acids isoleucine and valine, and the essential amino acid leucine, extended CLS in autophagy-deficient as well as autophagy-competent yeast. This extension was suppressed by constitutive expression of GCN4, which encodes a transcriptional regulator of general amino acid control (GAAC). Consistent with this, GCN4 expression was reduced by isoleucine and valine. Furthermore, elimination of the leucine requirement extended CLS and prevented the effects of constitutive expression of GCN4. Interestingly, deletion of LEU3, a GAAC target gene encoding a transcriptional regulator of branched side chain amino acid synthesis, dramatically increased CLS in the absence of amino acid supplements. In general, this indicates that activation of GAAC reduces CLS whereas suppression of GAAC extends CLS in minimal medium. These findings demonstrate important roles for autophagy and amino acid homeostasis in determining CLS in yeast.
The melanocortin-4 receptor (MC4R) is a G-protein coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating energy homeostasis and obesity. Up to a remarkable 6% of morbidly obese adults and children studied possess single nucleotide polymorphisms (SNPs) of the MC4R. Upon stimulation by agonist, the MC4R signals through the intracellular adenylate cyclase signal transduction pathway. Posttranslational modification of the pro-opiomelanocortin (POMC) gene transcript results in the generation of several endogenous melanocortin receptor agonists including alpha-, beta-, gamma-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH) ligands. The endogenous MC4R antagonist, agouti-related protein (AGRP), is expressed in the brain and is only one of two naturally occurring antagonists of GPCRs identified to date. Herein, we have generated 40 hMC4 polymorphic receptors and evaluated their cell surface expression by flow cytometry as well as pharmacologically characterized their functionality using the endogenous agonists alpha-MSH, beta-MSH, gamma2-MSH, ACTH(1-24), the antagonist hAGRP(87-132), and the synthetic agonists NDP-MSH and MTII. This is the first study in which polymorphic hMC4Rs have been pharmacologically characterized simultaneously with multiple endogenous ligands. Interestingly, at the N97D, L106P, and C271Y hMC4Rs beta-MSH was more potent than the other endogenous agonists alpha-MSH, gamma2-MSH, ACTH(1-24). The S58C and R165Q/W hMC4Rs possessed significantly reduced endogenous agonist potency (15- to 90-fold), but the synthetic ligands NDP-MSH and MTII possessed only 2-9-fold reduced potency as compared to the wild-type receptor, suggesting their potential as therapeutic ligands to treat individuals with these polymorphisms.
Rapamycin is an antibiotic that stimulates autophagy in a wide variety of eukaryotes, including the budding yeast Saccharomyces cerevisiae. Low concentrations of rapamycin extend yeast chronological life span (CLS). We have recently shown that autophagy is required for chronological longevity in yeast, which is attributable in part to a role for autophagy in amino acid homeostasis. We report herein that low concentrations of rapamycin stimulate macroautophagy during chronological aging and extend CLS.
Purpose: Va24-invariant natural killer T cells (NKT) are attractive carriers for chimeric antigen receptors (CAR) due to their inherent antitumor properties and preferential localization to tumor sites. However, limited persistence of CAR-NKTs in tumor-bearing mice is associated with tumor recurrence. Here, we evaluated whether coexpression of the NKT homeostatic cytokine IL15 with a CAR enhances the in vivo persistence and therapeutic efficacy of CAR-NKTs.Experimental Design: Human primary NKTs were ex vivo expanded and transduced with CAR constructs containing an optimized GD2-specific single-chain variable fragment and either the CD28 or 4-1BB costimulatory endodomain, each with or without IL15 (GD2.CAR or GD2.CAR.15). Constructs that mediated robust CAR-NKT cell expansion were selected for further functional evaluation in vitro and in xenogeneic mouse models of neuroblastoma.Results: Coexpression of IL15 with either costimulatory domain increased CAR-NKT absolute numbers. However, constructs containing 4-1BB induced excessive activationinduced cell death and reduced numeric expansion of NKTs compared with respective CD28-based constructs. Further evaluation of CD28-based GD2.CAR and GD2. CAR.15 showed that coexpression of IL15 led to reduced expression levels of exhaustion markers in NKTs and increased multiround in vitro tumor cell killing. Following transfer into mice bearing neuroblastoma xenografts, GD2.CAR.15 NKTs demonstrated enhanced in vivo persistence, increased localization to tumor sites, and improved tumor control compared with GD2.CAR NKTs. Importantly, GD2.CAR.15 NKTs did not produce significant toxicity as determined by histopathologic analysis.Conclusions: Our results informed selection of the CD28based GD2.CAR.15 construct for clinical testing and led to initiation of a first-in-human CAR-NKT cell clinical trial (NCT03294954).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.