BackgroundWhen treating cerebral metastases all involved multidisciplinary oncological specialists have to cooperate closely to provide the best care for these patients. For the resection of brain metastasis several studies reported a considerable risk of new postoperative paresis. Pre- and perioperative chemotherapy (Ctx) or radiotherapy (Rtx) alter vasculature and adjacent fiber tracts on the one hand, and many patients already present with paresis prior to surgery on the other hand. As such factors were repeatedly considered risk factors for perioperative complications, we designed this study to also identify risk factors for brain metastases resection.MethodsBetween 2006 and 2011, we resected 206 brain metastases consecutively, 56 in eloquent motor areas and 150 in non-eloquent ones. We evaluated the influences of preoperative paresis, previous Rtx or Ctx as well as recursive partitioning analysis (RPA) class on postoperative outcome.ResultsIn general, 8.7% of all patients postoperatively developed a new permanent paresis. In contrast to preoperative Ctx, previous Rtx as a single or combined treatment strategy was a significant risk factor for postoperative motor weakness. This risk was even increased in perirolandic and rolandic lesions. Our data show significantly increased risk of new deficits for patients assigned to RPA class 3. Even in non-eloquently located brain metastases the risk of new postoperative paresis has not to be underestimated. Despite the microsurgical approach, our cohort shows a high rate of unexpected residual tumors in postoperative MRI, which supports recent data on brain metastases’ infiltrative nature but might also be the result of our strict study protocol.ConclusionsSurgical resection is a safe treatment of brain metastases. However, preoperative Rtx and RPA score 3 have to be taken into account when surgical resection is considered.
BackgroundRecent data show differences in intraoperative neuromonitoring (IOM) in relation to the operated brain lesion. Due to the recently shown infiltrative nature of cerebral metastases, this work investigates the differences of IOM for cerebral metastases and glioma resection concerning sensitivity, specificity, and predictive values when aiming on preservation of motor function.MethodsBetween 2006 and 2011 we resected 171 eloquently located tumors (56 metastases, 115 gliomas) associated with the rolandic cortex or the pyramidal tract using IOM via direct cortical motor evoked potentials (MEPs). Postoperatively, MEP data were re-analyzed with respect to surgery-related paresis, residual tumor, and postoperative MRI with two different thresholds for MEP decline (50 and 80 % below baseline).ResultsMEP monitoring was successful in 158 cases (92.4 %). MEPs were stable in 54.7 % of all metastases cases and in 65.2 % of all glioma cases (p < 0.0001). After metastases resection, 21.4 % of patients improved and 21.9 % deteriorated in motor function. Glioma patients improved in only 5.4 % and worsened in 31.3 % of cases (p < 0.05). Resection was stopped due to MEP decline in 8.0 % (metastases) and 34.8 % of cases (gliomas) (p < 0.0002).ConclusionThere is significant difference between glioma and metastases resection. Post-hoc, metastases show more stable MEPs but a surprisingly high rate of surgery-related paresis and therefore a higher rate of false negative IOM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.