This paper reviews the work carried out under the European ACTS KEOPS (KEys to Optical Packet Switching) project, centering on the definition, development and assessment of optical packet switching and routing networks capable of providing transparency to the payload bit rate. The adopted approach uses optical packets of fixed duration with low bit rate headers to facilitate processing at the network/node interfaces. The paper concentrates on the networking concepts developed in the KEOPS project through a description of the implementation issues pertinent to optical packet switching nodes and network/node interfacing blocks, and consideration of the network functionalities provided within the optical packet layer. The implementation, from necessity, relies on advanced optoelectronic components specifically developed within the project, which are also briefly described.
Cellulose acetate, developed about 100 years ago as a versatile, semisynthetic plastic material, is used in a variety of applications and is perhaps best known as the basis of photographic film stock. Objects made wholly or partly from cellulose acetate are an important part of modern and contemporary cultural heritage, particularly in museum collections. Given the potential instability of the material, however, it is imperative to understand the aging mechanisms and deterioration pathways of cellulose ester plastics to mitigate decomposition and formulate guidelines for storage, exhibition, and conservation. One important aspect of this process is the ability to fully characterize the plastic, because variations in composition affect its aging properties and ultimate stability. In this Account, we assess the potential of a range of analytical techniques for plastics made from cellulose acetate, cellulose propionate, and cellulose butyrate. Comprehensive characterization of cellulose ester plastics is best achieved by applying several complementary analytical techniques. Fourier-transform IR (FTIR) and Raman spectroscopy provide rapid means for basic characterization of plastic objects, which can be useful for quick, noninvasive screening of museum collections with portable instruments. Pyrolysis GC/MS is capable of differentiating the main types of cellulose ester polymers but also permits a richly detailed compositional analysis of additives. Thermal analysis techniques provide a wealth of compositional information and thermal behavior. Thermogravimetry (TG) allows for quantitative analysis of thermally stable volatile additives, and weight-difference curves offer a novel means for assessing oxidative stability. The mechanical response to temperature, such as the glass transition, can be measured with dynamic mechanical analysis (DMA), but results from other thermal analysis techniques such as TG, differential scanning calorimetry (DSC), and dynamic load thermomechanical analysis (DLTMA) are often required to more accurately interpret the results. The analytical results from this study form the basis for in-depth studies of works of art fabricated from cellulose acetate. These objects, which are particularly at risk when stored in tightly sealed containers (as is often the case with photographic film), warrant particular attention for conservation given their susceptibility toward sudden onset of deterioration.
Transcytosis across the blood-brain barrier (BBB) regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs) remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab) sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab) sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.