Turbulent fluid has often been conceptualized as a transient thermodynamic phase. Here, a finite-time thermodynamics (FTT) formalism is proposed to compute mean flow and fluctuation levels of unsteady incompressible flows. The proposed formalism builds upon the Galerkin model framework, which simplifies a continuum 3D fluid motion into a finite-dimensional phase-space dynamics and, subsequently, into a thermodynamics energy problem. The Galerkin model consists of a velocity field expansion in terms of flow configuration dependent modes and of a dynamical system describing the temporal evolution of the mode coefficients. Each mode is treated as one thermodynamic degree of freedom, characterized by an energy level. The dynamical system approaches local thermal equilibrium (LTE) where each mode has the same energy if it is governed only by internal (triadic) mode interactions. However, in the generic case of unsteady flows, the full system approaches only partial LTE with unequal energy levels due to strongly mode-dependent external interactions. The first illustrated by a traveling wave governed by a 1D Burgers equation. It is then applied to two flow benchmarks: the relatively simple laminar vortex shedding, which is dominated by two eigenmodes, and the homogeneous shear turbulence, which has been modeled with 1459 modes.
We investigate linear-quadratic dynamical systems with energy-preserving quadratic terms. These systems arise for instance as Galerkin systems of incompressible flows. A criterion is presented to ensure long-term boundedness of the system dynamics. If the criterion is violated, a globally stable attractor cannot exist for an effective nonlinearity. Thus, the criterion can be considered a minimum requirement for control-oriented Galerkin models of viscous fluid flows. The criterion is exemplified, for example, for Galerkin systems of two-dimensional cylinder wake flow models in the transient and the post-transient regime, for the Lorenz system and for wall-bounded shear flows. There are numerous potential applications of the criterion, for instance, system reduction and control of strongly nonlinear dynamical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.