Abstract. The goal of this work is to pursue the study of pseudo-effective line bundles and vector bundles. Our first result is a generalization of the Hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle. The Lefschetz map is shown to be surjective when (and, in general, only when) the pseudo-effective line bundle is twisted by its multiplier ideal sheaf. This result has several geometric applications, e.g. to the study of compact Kähler manifolds with pseudo-effective canonical or anti-canonical line bundles. Another concern is to understand pseudo-effectivity in more algebraic terms. In this direction, we introduce the concept of an "almost" nef line bundle, and mean by this that the degree of the bundle is nonnegative on sufficiently generic curves. It can be shown that pseudo-effective line bundles are almost nef, and our hope is that the converse also holds true. This can be checked in some cases, e.g. for the canonical bundle of a projective 3-fold. From this, we derive some geometric properties of the Albanese map of compact Kähler 3-folds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.