We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or magnetite and for the nonferromagnet, copper or gold. The spin Hall magnetoresistance effect is theoretically ascribed to the combined action of spin Hall and inverse spin Hall effect in the platinum metal top layer. It therefore should characteristically depend upon the orientation of the magnetization in the adjacent ferromagnet and prevail even if an additional, nonferromagnetic metal layer is inserted between Pt and the ferromagnet. Our experimental data corroborate these theoretical conjectures. Using the spin Hall magnetoresistance theory to analyze our data, we extract the spin Hall angle and the spin diffusion length in platinum. For a spin-mixing conductance of 4 × 10 14 −1 m −2 , we obtain a spin Hall angle of 0.11 ± 0.08 and a spin diffusion length of (1.5 ± 0.5) nm for Pt in our thin-film samples.
We perform a quantitative, comparative study of the spin pumping, spin Seebeck and spin Hall magnetoresistance effects, all detected via the inverse spin Hall effect in a series of over 20 yttrium iron garnet/Pt samples. Our experimental results fully support present, exclusively spin currentbased, theoretical models using a single set of plausible parameters for spin mixing conductance, spin Hall angle and spin diffusion length. Our findings establish the purely spintronic nature of the aforementioned effects and provide a quantitative description in particular of the spin Seebeck effect.Pure spin currents present a new paradigm in spintronics [1, 2] and spin caloritronics [3]. In particular, spin currents are the origin of spin pumping [4,5], the spin Seebeck effect [6,7] and the spin Hall magnetoresistance (SMR) [8][9][10]. Taken alone, all these effects have been extensively studied, both experimentally [6-9, 11-13] and theoretically [4,[14][15][16][17][18]. From a theoretical point of view, all these effects are governed by the generation of a current of angular momentum via a non-equilibrium process. The flow of this spin current across a ferromagnet/normal metal interface can then be detected. The relevant interface property that determines the spin current transport thereby is the spin mixing conductance. Nevertheless, there has been an ongoing debate regarding the physical origin of the measurement data acquired in spin Seebeck and SMR experiments due to possible contamination with anomalous Nernst effect [19][20][21] or anisotropic magnetoresistance [22,23] caused by static proximity polarization of the normal metal [23]. To settle this issue, a rigorous check of the consistency of the spin-current based physical models across all three effects is needed. If possible contamination effects are absent, according to the spin mixing conductance concept [24], there should exist a generalized Ohm's law between the interfacial spin current and the energy associated with the corresponding non-equilibrium process. This relation should invariably hold for the spin pumping, spin Seebeck and spin Hall magnetoresistance effects, as they are all based on the generation and detection of interfacial, nonequilibrium spin currents. We here put forward heuristic arguments that are strongly supported by experimental evidence for a scaling law that links all aforementioned spin(calori)tronic effects on a fundamental level and allows to trace back their origin to pure spin currents. (c) The spin Hall magnetoresistance is due to the torque exerted on M by an appropriately polarized Js which yields a change in the reflected spin current J r s . The interconversion between Js (J r s ) and the charge currents Jc (J r c ) are due to the (inverse) spin Hall effect in the normal metal.[schematically depicted in Fig. 1(a)], we place YIG / Pt bilayers in a microwave cavity operated at ν = 9.85 GHz to resonantly excite magnetization dynamics. The emission of a spin current density J s across the bilayer interface into the Pt provides...
We calculate the phonon, electron, and magnon temperature profiles in yttrium iron garnet/platinum bilayers by diffusive theory with appropriate boundary conditions, in particular taking into account interfacial thermal resistances. Our calculations show that in thin film hybrids, the interface magnetic heat conductance qualitatively affects the magnon temperature. Based on published material parameters we assess the degree of nonequilibrium at the yttrium iron garnet/platinum interface. The magnitude of the spin Seebeck effect derived from this approach compares well with experimental results for the longitudinal spin Seebeck effect. Additionally, we address the temperature profiles in the transverse spin Seebeck effect.
The spin Seebeck effect, the generation of a spin current by a temperature gradient, has attracted great attention, but the interplay over a millimetre range along a thin ferromagnetic film as well as unintended side effects which hinder an unambiguous detection have evoked controversial discussions. Here, we investigate the inverse spin Hall voltage of a 10 nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 and NiFe2O4 with a temperature gradient in the film plane. We show characteristics typical of the spin Seebeck effect, although we do not observe the most striking features of the transverse spin Seebeck effect. Instead, we attribute the observed voltages to the longitudinal spin Seebeck effect generated by a contact tip induced parasitic out-of-plane temperature gradient, which depends on material, diameter and temperature of the tip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.