This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell–derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.Electronic supplementary materialThe online version of this article (doi:10.1007/s00204-013-1078-5) contains supplementary material, which is available to authorized users.
We investigate the "generalized second-price" (GSP) This paper investigates a new auction mechanism, which we call the "generalized secondprice" auction, or GSP. GSP is tailored to the unique environment of the market for online ads, and neither the environment nor the mechanism has previously been studied in the mechanism design literature. While studying the properties of a novel mechanism is often fascinating in itself, our interest is also motivated by the spectacular commercial success of GSP. It is the dominant transaction mechanism in a large and rapidly growing industry. For example, Google's total revenue in 2005 was $6.14 billion. Over 98 percent of its revenue came from GSP auctions. Yahoo!'s total revenue in 2005 was $5.26 billion. A large share of Yahoo!'s revenue is derived from sales via GSP auctions. It is believed that over half of Yahoo!'s revenue is derived from sales via GSP auctions. As of May 2006, the combined market capitalization of these companies exceeded $150 billion.Let us briefly describe how these auctions work. When an Internet user enters a search term ("query") into a search engine, he gets back a page with results, containing both the links most relevant to the query and the sponsored links, i.e., paid advertisements. The ads are clearly distinguishable from the actual search results, and different searches yield different sponsored links: advertisers target their ads based on search keywords. For instance, if a travel agent buys the word "Hawaii," then each time a user performs a search on this word, a link to the travel agent will appear on the search results page. When a user clicks on the sponsored link, he is sent to the advertiser's Web page. The advertiser then pays the search engine for sending the user to its Web page, hence the name-"pay-per-click" pricing.The number of ads that the search engine can show to a user is limited, and different positions on the search results page have different desirabilities for advertisers: an ad shown at the top of a page is more likely to be clicked than an ad shown at the bottom. Hence, search engines need a system for allocating the positions to advertisers, and auctions are a natural choice. Currently, the mechanisms most widely used by search engines are based on GSP.In the simplest GSP auction, for a specific keyword, advertisers submit bids stating their maximum willingness to pay for a click. When a user enters a keyword, he receives search results along with sponsored links, the latter shown in decreasing order of bids. In particular,
We investigate the "generalized second price" auction (GSP), a new mechanism which is used by search engines to sell online advertising that most Internet users encounter daily. GSP is tailored to its unique environment, and neither the mechanism nor the environment have previously been studied in the mechanism design literature. Although GSP looks similar to the Vickrey-ClarkeGroves (VCG) mechanism, its properties are very different. In particular, unlike the VCG mechanism, GSP generally does not have an equilibrium in dominant strategies, and truth-telling is not an equilibrium of GSP. To analyze the properties of GSP in a dynamic environment, we describe the generalized English auction that corresponds to the GSP and show that it has a unique equilibrium. This is an ex post equilibrium that results in the same payoffs to all players as the dominant strategy equilibrium of VCG.
Only little is known about how cells coordinately behave to establish functional tissue structure and restore microarchitecture during regeneration. Research in this field is hampered by a lack of techniques that allow quantification of tissue architecture and its development. To bridge this gap, we have established a procedure based on confocal laser scans, image processing, and three-dimensional tissue reconstruction, as well as quantitative mathematical modeling. As a proof of principle, we reconstructed and modeled liver regeneration in mice after damage by CCl 4 , a prototypical inducer of pericentral liver damage. We have chosen the regenerating liver as an example because of the tight link between liver architecture and function: the complex microarchitecture formed by hepatocytes and microvessels, i.e. sinusoids, ensures optimal exchange of metabolites between blood and hepatocytes. Our model captures all hepatocytes and sinusoids of a liver lobule during a 16 days regeneration process. The model unambiguously predicted a so-far unrecognized mechanism as essential for liver regeneration, whereby daughter hepatocytes align along the orientation of the closest sinusoid, a process which we named "hepatocyte-sinusoid alignment" (HSA). The simulated tissue architecture was only in agreement with the experimentally obtained data when HSA was included into the model and, moreover, no other likely mechanism could replace it. In order to experimentally validate the model of prediction of HSA, we analyzed the three-dimensional orientation of daughter hepatocytes in relation to the sinusoids. The results of this analysis clearly confirmed the model prediction. We believe our procedure is widely applicable in the systems biology of tissues.agent based model | image processing and analysis | mathematical tissue modeling | systems biology | morphogenesis T he liver is the main metabolic organ which removes drugs and toxins from the blood. One of the outstanding features of the liver is its capacity to regenerate hepatocyte loss of up to 70% of its mass within a relatively short period of time (1). Hepatic parenchyma is organized in repetitive functional units called liver lobules, which besides its main constituents, hepatocytes, consists of sinusoidal endothelial cells, Kupffer, stellate, and bile duct cells. Branches of the hepatic artery and portal vein guide blood to the periportal regions of the lobules (Fig. 1A). From there, it flows through microvessels, the sinusoids, along hepatocyte columns that are lined with endothelial cells (generally known as sinusoidal cells), and drains into the central vein. This complex lobule architecture ensures a maximal exchange area between blood and hepatocytes in healthy liver. In liver disease, such as hepatocellular cancer, the contact surface between hepatocytes and sinusoidal cells decreases and contributes to compromised liver function (Fig. 1F). Recent research on liver regeneration has focused on molecular pathways and the mechanisms involved (2). Little is known about...
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.