The Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE) was conducted in the spring of 1993 from Moffett Field, California (NASA Ames Research Center), utilizing the NASA high‐altitude ER‐2 aircraft. These northern midlatitude aircraft flights showed laminae containing high ozone concentrations, traceable to the April 1993 polar vortex breakup and corroborated by laminae of other trace gases such as CFCs, CH4, N2O, and CO2. These laminae are clearly traceable as polar vortex breakup fragments using Rossby‐Ertel's potential vorticity and isentropic trajectory calculations. Laminae in stratospheric ozone profiles are commonly observed in the northern hemisphere from fall to spring, and are hypothesized to originate from very low frequency transverse waves, and/or via Rossby wave breaking. On the basis of these results, the ozone laminae observed during SPADE were a result of Rossby wave breaking during the breakdown of the polar vortex. In addition, it is shown that conventional once‐per‐day meteorological analyses were adequate for representing the transport of this material into the lower stratosphere midlatitudes over the course of the spring vortex breakup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.