Recent studies suggest that the most common and lethal type of “ovarian” cancer, high-grade serous carcinoma (HGSC), usually arises from epithelium on the fallopian tube fimbriae, and not from the ovarian surface epithelium (OSE). We have developed Ovgp1-iCreERT2 mice in which the Ovgp1 promoter controls expression of tamoxifen (TAM)-regulated Cre recombinase in oviductal epithelium – the murine equivalent of human fallopian tube epithelium (FTE). We employed Ovgp1-iCreERT2 mice to show that FTE-specific inactivation of several different combinations of tumour suppressor genes recurrently mutated in human HGSCs – namely Brca1, Trp53, Rb1, and Nf1 – results in serous tubal intraepithelial carcinomas (STICs) that progress to HGSC or carcinosarcoma, and to widely metastatic disease in a subset of mice. The cancer phenotype is highly penetrant and more rapid in mice carrying engineered alleles of all four tumour suppressor genes. Brca1, Trp53 and Pten inactivation in the oviduct also results in STICs and HGSCs, and is associated with diffuse epithelial hyperplasia and mucinous metaplasia not observed in mice with intact Pten. Oviductal tumours arise earlier in these mice, compared to those with Brca1, Trp53, Rb1 and Nf1 inactivation. Tumour initiation and/or progression in mice lacking conditional Pten alleles likely requires acquisition of additional defects, a notion supported by our identification of loss of the wild-type Rb1 allele in the tumours of mice carrying only one floxed Rb1 allele. Collectively, the models closely recapitulate the heterogeneity and histological, genetic, and biological features of human HGSC. These models should prove useful for studying the pathobiology and genetics of HGSC in vivo, and for testing new approaches for prevention, early detection, and treatment.
Inactivation of the ARID1A tumor suppressor gene is frequent in ovarian endometrioid (OEC) and clear cell carcinomas (OCCC), often in conjunction with mutations activating the PI3K/AKT and/or canonical Wnt signaling pathways. Prior work has shown that conditional bi-allelic inactivation of the Apc and Pten tumor suppressor genes in the mouse ovarian surface epithelium (OSE) promotes outgrowth of tumors that reflect the biological behavior and gene expression profiles of human OECs harboring comparable Wnt and PI3K/AKT pathway defects, though the mouse tumors are more poorly differentiated than their human tumor counterparts. We found that conditional inactivation of one or both Arid1a alleles in OSE concurrently with Apc and Pten inactivation unexpectedly prolonged survival of tumor-bearing mice and promoted striking epithelial differentiation of the cancer cells, resulting in morphological features akin to those in human OECs. Enhanced epithelial differentiation was linked to reduced expression of mesenchymal markers N-cadherin and vimentin, and increased expression of epithelial markers Crb3 and E-cadherin. Global gene expression profiling showed enrichment for genes associated with mesenchymal-to-epithelial transition in the Arid1a-deficient tumors. We also found that an activating (E545K) Pik3ca mutation, unlike Pten inactivation or Pik3ca H1047R mutation, cannot cooperate with Arid1a loss to promote ovarian cancer development in the mouse. Our results indicate the Arid1a tumor suppressor gene has a key role in regulating OEC differentiation, and paradoxically the mouse cancers with more initiating tumor suppressor gene defects had a less aggressive phenotype than cancers arising from fewer gene alterations.
A major focus of the Comprehensive Care for Joint Replacement bundle is improving cost and quality by limiting readmission rates. TKA readmissions are low and comprise a small percentage of total TKA cost, suggesting that they may not be the optimal measure of quality care or a significant driver of overall cost.
Most high‐grade serous carcinomas are thought to arise from Fallopian tube epithelium (FTE), but some likely arise outside of the tube, perhaps from ectopic tubal‐type epithelium known as endosalpingiosis. Importantly, the origin of endosalpingiosis is poorly understood. The proximity of the tubal fimbriae to the ovaries has led to the proposal that disruptions in the ovarian surface that occur during ovulation may allow detached FTE to implant in the ovary and form tubal‐type glands and cysts. An alternative model suggests that cells present in ectopic locations outside the Müllerian tract retain the capacity for multi‐lineage differentiation and can form glands with tubal‐type epithelium. We used double transgenic Ovgp1‐iCreERT2;R26RLSL‐eYFP mice, which express an eYFP reporter protein in OVGP1‐positive tissues following transient tamoxifen (TAM) treatment, to track the fate of oviductal epithelial cells. Cohorts of adult mice were given TAM to activate eYFP expression in oviductal epithelium, and ovaries were examined at time points ranging from 2 days to 12 months post‐TAM. To test whether superovulation might increase acquisition of endosalpingiosis, additional cohorts of TAM‐treated mice underwent up to five cycles of superovulation and ovaries were examined at 1, 6, and 12 months post‐TAM. Ovaries were sectioned in their entirety to identify endosalpingiosis. Immunohistochemical staining for PAX8, tubulin, OVGP1, and eYFP was employed to study endosalpingiosis lesions. Ovarian endosalpingiosis was identified in 14.2% of TAM‐treated adult mice. The endosalpingiotic inclusion glands and cysts were lined by secretory and ciliated cells and expressed PAX8, tubulin, OVGP1, and eYFP. Neither age nor superovulation was associated with a significant increase in endosalpingiosis. Endosalpingiosis was also occasionally present in the ovaries of pre‐pubertal mice. The findings imply that ovarian endosalpingiosis in the mouse does not likely arise as a consequence of detachment and implantation of tubal epithelium and other mechanisms may be relevant. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.