Recent evidence linking hyperprolactinaemia to longer-term clinical sequelae, including osteoporosis, hip fractures and possibly breast cancer, is increasing clinical awareness of the relevance of hyperprolactinaemia. A review of the literature finds clinical trials reporting some degree of comparative prolactin data among antipsychotics. Many of the randomised clinical trials (RCTs) do not report categorical rates of hyperprolactinaemia in contrast with the naturalistic studies, making it complex for clinicians to evaluate the extent and severity of hyperprolactinaemia. Hyperprolactinaemia is one of the commonest adverse events reported in clinical trials and can be found in association with all antipsychotics. The highest rates of hyperprolactinaemia are reported in association with risperidone and amisulpride, often as high as 80-90% of all female subjects and consistently greater than with the typical antipsychotics. Significant rates of hyperprolactinaemia of lesser severity and more transience have also been reported in association with other atypical antipsychotics.
Background Fatigue is a common and debilitating feature of multiple sclerosis (MS) that remains without reliably effective treatment. Transcranial direct current stimulation (tDCS) is a promising option for fatigue reduction. We developed a telerehabilitation protocol that delivers tDCS to participants at home using specially designed equipment and real-time supervision (remotely supervised transcranial direct current stimulation (RS-tDCS)). Objective To evaluate whether tDCS can reduce fatigue in individuals with MS. Methods Dorsolateral prefrontal cortex left anodal tDCS was administered using a RS-tDCS protocol, paired with 20 minutes of cognitive training. Here, two studies are considered. Study 1 delivered 10 open-label tDCS treatments (1.5 mA; n = 15) compared to a cognitive training only condition (n = 20). Study 2 was a randomized trial of active (2.0 mA, n = 15) or sham (n = 12) delivered for 20 sessions. Fatigue was assessed using the Patient-Reported Outcomes Measurement Information System (PROMIS)—Fatigue Short Form. Results and conclusion In Study 1, there was modest fatigue reduction in the active group (−2.5 ± 7.4 vs −0.2 ± 5.3, p = 0.30, Cohen’s d = −0.35). However, in Study 2 there was statistically significant reduction for the active group (−5.6 ± 8.9 vs 0.9 ± 1.9, p = 0.02, Cohen’s d = −0.71). tDCS is a potential treatment for MS-related fatigue.
Cognitive impairment affects more than half of all individuals living with multiple sclerosis (MS). We hypothesized that training at home with an adaptive online cognitive training program would have greater cognitive benefit than ordinary computer games in cognitively-impaired adults with MS. This was a double-blind, randomized, active-placebo-controlled trial. Participants with MS were recruited through Stony Brook Medicine and randomly assigned to either the adaptive cognitive remediation (ACR) program or active control of ordinary computer games for 60 hours over 12 weeks. Training was remotely-supervised and delivered through a study-provided laptop computer. A computer generated, blocked stratification table prepared by statistician provided the randomization schedule and condition was assigned by a study technician. The primary outcome, administered by study psychometrician, was measured by change in a neuropsychological composite measure from baseline to study end. An intent-to-treat analysis was employed and missing primary outcome values were imputed via Markov Chain Monte Carlo method. Participants in the ACR (n = 74) vs. active control (n = 61) training program had significantly greater improvement in the primary outcome of cognitive functioning (mean change in composite z score±SD: 0·25±0·45 vs. 0·09±0·37, p = 0·03, estimated difference = 0·16 with 95% CI: 0·02–0·30), despite greater training time in the active control condition (mean±SD:56·9 ± 34·6 vs. 37·7 ±23 ·8 hours played, p = 0·006). This study provides Class I evidence that adaptive, computer-based cognitive remediation accessed from home can improve cognitive functioning in MS. This telerehabilitation approach allowed for rapid recruitment and high compliance, and can be readily applied to other neurological conditions associated with cognitive dysfunction.Trial Registration: Clinicaltrials.gov NCT02141386
(tDCS) Remotely supervised tDCS At-home tDCS Best practices in tDCS tDCS safety guide a b s t r a c t Background: Transcranial direct current stimulation (tDCS) is a method of noninvasive neuromodulation and potential therapeutic tool to improve functioning and relieve symptoms across a range of central and peripheral nervous system conditions. Evidence suggests that the effects of tDCS are cumulative with consecutive daily applications needed to achieve clinically meaningful effects. Therefore, there is growing interest in delivering tDCS away from the clinic or research facility, usually at home. Objective: To provide a comprehensive guide to operationalize safe and responsible use of tDCS in home settings for both investigative and clinical use. Methods: Providing treatment at home can improve access and compliance by decreasing the burden of time and travel for patients and their caregivers, as well as to reach those in remote locations and/or living with more advanced disabilities. Results: To date, methodological approaches for at-home tDCS delivery have varied. After implementing the first basic guidelines for at-home tDCS in clinical trials, this work describes a comprehensive guide for facilitating safe and responsible use of tDCS in home settings enabling access for repeated administration over time. Conclusion: These guidelines provide a reference and standard for practice when employing the use of tDCS outside of the clinic setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.